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ADVANCED SIGNAL PROCESSING AND PATTERN RECOGNITION METHODS 
FOR PASSIVE INFRARED REMOTE SENSORS 

Introduction 

Open path Fourier transform infrared (FTIR) spectroscopy is a technique of growing 
importance in a variety of environmental monitoring applications [1, 2]. In this experiment, an 
interferometer-based optical system is used to monitor the atmosphere between the 
spectrometer and an infrared source. Three basic experimental setups are commonly 
employed, termed the passive terrestrial, active bistatic, and active monostaic configurations. 
The passive measurement is based on the collection of the naturally occurring infrared emission 
from some terrestrial source, while the active experiments collect the emission from a 
commercial blackbody infrared source. In either case, the goal of the analysis is to detect the 
infrared signatures of target compounds present in the intervening atmosphere between the 
source and spectrometer. 

The analysis of data from these experiments is challenging due to the possible presence 
of many spectral interferents, as wel1 as the problem of significant changes in the infrared 
background emission. The latter problem is particularly troublesome in the passive terrestrial 
experiment due to the complete lack of control of the infrared source radiance. 

Recent research in our laboratories has focused on the design of data analysis strategies 
that meet these challenges [3-i 3]. This work is based on the application of pattern recognition 
techniques to identify the characteristic signatures of target compounds directly in the 
interferogram data collected by the spectrometer. To help reject the contributions of spectral 
interferents and to overcome the problems associated with a changing infrared background, two 
preprocessing steps are applied to the interferogram data before the pattern recognition analysis 
is performed. First, the interferogram is windowed to isolate a short segment displaced from the 
centerburst. This step helps to discriminate against broad background spectral features whose 
interferogram representations damp rapidly. By selecting a segment remote from the 
centerburst, the contribution of these background signatures is minimized. Next, a bandpass 
digital filter is applied to the windowed interferogram segment. The application of the filter 
serves to suppress in the interferogram those sinusoidal signals corresponding to spectral 
frequencies lying outside the filter bandpass. By designing the filter to pass only those 
frequencies associated with an absorption band of the target compound, frequency selectivity is 
made a part of the direct interferogram analysis. This prevents any overlap or interference from 
the interferogram signatures of spectral bands located at frequencies outside the filter 
bandpass. The interferogram-based analysis thus focuses on a narrow band of spectral 
frequencies, regardless of the complexity of the infrared spectrum of the analyte or the presence 
of bands from interfering compounds. 

Figure 1 provides an illustration of the application of windowing and bandpass filtering to 
interferogram data. The first column in the figure plots sections (1300-700 cm'1) of four 
gas-phase, single-beam FTIR spectra corresponding to a mixture of SF6 and CCI3F (A), pure 
SF6 (B), pure CCI3F (C), and an open-beam infrared background (D). Absorption bands are 
clearly seen in spectra A, B, and C as a decrease in light intensity over the absorbing region. 
Superimposed on these spectra is a Gaussian-shaped bandpass of a digital filter designed to 
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isolate the S-F stretching band of SF6 at 945 cm"1. The second column of the figure presents the 
results of windowing the corresponding interferograms to isolate points 100-239 (relative to the 
centerburst), while the third column plots the same interferogram segment after application of 
the filter based on the bandpass depicted in the first column. The vertical scale is constant 
within each column in Figure 1, but differs across the rows. 

Inspection of the windowed interferogram segments in the second column reveals the 
effectiveness of the windowing procedure in removing the contribution of spectral features based 
on their band widths. As expected, interferogram segment D has a much smaller amplitude than 
segments A, B, or C due to the more rapid damping of the interferogram representation of the 
broad infrared background signature. However, segments A, B, and C also illustrate that 
windowing alone is insufficient to isolate compound-specific information in the interferogram, 
particularly given the similarities in widths of the spectral bands of most organic compounds. 
Significant amplitude is clearly seen in each segment due to the contributions of all of the 
narrow-band spectral features present. Segment A is of particular interest, as the prominent 
beat pattern in the interferogram arises due to the interference among the representations of the 
three spectial bands. 

As depicted in the third column of Figure 1, the key to isolating compound-specific 
information in the interferogram is the application of a bandpass filter designed to pass only 
those frequencies corresponding to an analyte band of interest. Through application of the filter 
whose bandpass is depicted in the first column of the figure, the interferogram segments in the 
third column are dramatically altered. The segment corresponding to the infrared background 
(D) is further reduced in amplitude due to the removal of the contribution of narrow-band noise 
features. Segment C, containing the contributions of the two bands of CCI3F (845 and 1084 
cm'1) is effectively zeroed also, due to the fact that the frequencies corresponding to these two 
bands have been suppressed in the interferogram through the application of the filter. 
Significant amplitude remains in segments A and B, as the filter passes the frequencies 
associated with the SF6 band at 945 cm1. However, the beat pattern in segment A is no longer 
observed because the frequencies corresponding to the two CCI3F bands have been 
suppressed. The interference giving rise to the beat pattern thus no longer occurs. Also, after 
filtering, the greater magnitude of the SF6 band in spectrum B relative to that in spectrum A is 
also seen in the interferogram, manifested as a larger amplitude in the filtered segment. This 
suggests that both qualitative and quantitative information is present in the filtered interferogram. 

This report describes four investigations that employ the basic interferogram signal 
processing strategies outlined above. First, an experimental design protocol is developed for use 
in optimizing several adjustable parameters associated with the use of this interferogram-based 
analysis for qualitative identifications of compound signatures. Second, this methodology is 
applied to the detection of signatures of trichloroethylene (TCE) in a series of laboratory and 
open-air monitoring experiments. A wide variety of infrared background conditions are employed 
in this study. Third, a direct quantitative analysis of sulfur dioxide (S02) is implemented with the 
filtered interferogram data. Controlled field data designed to simulate S02 stack emissions are 
used in this study. Finally, a method is described for developing an interferogram-based 
compound detection algorithm that does not contain instrument-specific information. This 
algorithm can be developed with data collected with one spectrometer, and then applied to data 
collected with a second spectrometer. Sulfur hexafluoride and acetone data are employed in the 
development of this method. 
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Experimental Design Protocol for the Pattern Recognition 
Analysis of Bandpass Filtered Interferograms 

The success of the interferogram windowing and filtering preprocessing steps described 
above is keyed by optimizing the interferogram segment and filter bandpass chosen for a given 
analyte. The example displayed in Figure 1 corresponded to a filter bandpass and interferogram 
segment optimized for extracting the interferogram representation of the SF6 band at 945 cm"1. 
This optimization requires the selection of optimal values for four experimental variables: (1) 
filter bandpass location, (2) bandpass width, (3) interferogram segment starting location, and (4) 
segment size. In previous work performed in this laboratory, optimal or near-optimal values 
were obtained for these four experimental variables for a wide range of compounds including 
CCI3F, [4], CCI2F2 [4], benzene [5], nitrobenzene [3], methanol [11], sulfur hexafluoride [4, 9,10, 
12], acetone [12], and methyl ethyl ketone [12]. In each case, an intensive study was needed to 
determine the optimal settings. It was empirically noted that relationships among the 
experimental variables existed. However, no attempt was made to study these relationships in 
detail. 

Other workers have studied the importance of choosing the optimal interferogram 
segment window to obtain analyte information. The original work in this area was performed for 
the reconstruction of gas chromatograms from gas chromatography/ FTIR (GC/FTIR) 
interferogram data [14,15]. In that work, the optimal region of the interferogram was found to be 
a 100-point segment displaced 60 points from the centerburst. Later work by Bjerga and Small 
employed bandpass digital filters for the reconstruction of GC/FTIR chromatograms [16]. They 
concluded that after filtering, the optimal region was a 75-point segment located 171 points from 
the centerburst.   Monfre and Brown employed K-matrix regression to obtain quantitative 
information from FTIR interferograms. The optimal interferogram window was found to start at 
interferogram point 10 and end at interferogram point 1388, relative to the centerburst [17,18]. 
In each of the above studies, it was concluded that it is possible to extract useful analyte 
information close to the centerburst region of the interferogram. However, no attempt was made 
to study the relationships that exist between a bandpass filter and the interferogram segment 
window. 

In the work described here, experimental design techniques are used to study the 
relationships among the four variables involved in an analysis based on bandpass filtered 
interferograms. The overall goal of the work is to define an experimental protocol for use in 
optimizing the settings of these variables. This protocol provides an efficient means for 
designing an interferogram-based detection scheme for any target analyte. 

Experimentation 

The FTIR data used in this work consisted of laboratory data collected to simulate 
conditions found in open-air measurements, as well as actual field data collected during a series 
of field trials. The laboratory data were used to implement the experimental design study of the 
data analysis variables, while the field data were used to confirm the results of this study. 

Sulfur hexafluoride was used as the test analyte in the collection of both types of 
data. It is a standard test compound used in open path FTIR studies due to its strong 
absorptivity in the infrared and low toxicity. The S-F stretching band in the region of 945 cm'1 
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was used as the targeted spectral band in the digital filtering and pattern recognition work 
reported here. The full width at half-maximum (fwhm) of this band is approximately 10 cm'1. 

The laboratory data collection employed a Honeywell emission spectrometer (Model: 
XM21). This spectrometer design consisted of a flex-pivot "porch swing" Michelson 
interferometer and employed a closed-cycle Stirling cooler for maintaining the Hg:Cd:Te detector 
at 77 °K. The detector spectral response was restricted to the 8-12 urn atmospheric 
transmission window. The spectrometer was aligned with a 4" x 4" extended blackbody infrared 
source (Model SR-80, Cl Systems, Inc., Agoura, CA). This NIST certified source is accurate to 
± 0.03 °C and precise to ± 0.01 °C. The blackbody was used to obtain an adjustable 
temperature source from ambient to 50 °C, thereby simulating changes in the infrared 
background radiance that might be encountered in an actual open path measurement with the 
passive terrestrial spectrometer configuration. 

For the data collection, a gas syringe was used to inject SF6 samples into a custom 
short-path gas cell with low density polyethylene windows (0.0005" thickness) [19]. The gas cell 
was used at atmospheric pressure. The cell body was 8.3 cm long and 16.5 cm in diameter. 
The cell contained a DC motor driven fan to ensure that a homogeneous mixture of air and SF6 
was present throughout the cell [20]. The cell was used at ambient temperature. The actual cell 
temperature was monitored to ± 0.1 °C with a thermistor probe (Jenco Model 7002H, probe 
409B G98598, Jenco Instruments, Inc., San Diego, CA). Over the course of the data collection, 
the cell temperature varied from 24.2 - 25.9 °C. 

The cell was positioned between the blackbody source and spectrometer, with a 
distance of 10.8 cm between the source and cell and 14.6 cm between the cell and 
spectrometer. A helium neon laser was used to align the blackbody source, cell, and 
spectrometer such that the spectrometer field of view contained only the cell and the source. 

Interferograms were collected with two different volumes of SF6(0.1 and 0.2 cm3) and 
several blackbody temperatures. The SF6 gas volumes correspond to concentrations of 56.3 
and 112.7 ppm, respectively. The corresponding concentration-path length products were 4.7 
ppm-m and 9.4 ppm-m. In addition, interferograms were collected at each source temperature 
with no SF6 in the cell and with no cell in the optical path. Table 1 summarizes the data 
collected. All interferograms were single scans (i.e., no signal averaging was performed) 
consisting of 1024 points sampled at every eighth zero-crossing of the reference laser. The 
maximum observable frequency was 1974.8 cm"1 and the point spacing in the transformed 
spectra was 3.9 cm'1. 

The occurrence of small temperature differences between SF6 in the gas cell and the 
blackbody source produced some cases in which even though SF6 was present in the cell, its 
spectral band at 945 cm'1 could not be detected visually. These data were retained, however, 
and the interferograms were still assigned to the SF6-containing data class. It is estimated that 
these interferograms account for approximately 1-2% of the data. 

The collection of the field data spanned a period of eight weeks and employed a 
portable emission spectrometer constructed by Midac Corp. (Irvine, CA). The spectrometer 
employed a linear drive Michelson interferometer and a 1 mm2 liquid nitrogen cooled Hg:Cd:Te 
detector. Single-scan interferograms were collected with the same characteristics as described 
above. 
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Table 1 

Laboratory Data 

Sample 
volume 
(cm3) 

Blackbody 
Temperature 

(°C) 

Cell 
Temperature 

(°C) 

Number of interferograms 

SFfi-containing       Background 

0.2 Ambient 24.6 48 64 

20.0 24.7 32 64 

22.0 24.8 32 64 

24.0 24.9 32 64 

24.9 25.0 32 64 

25.0 25.1 32 64 

26.0 25.2 32 64 

28.0 25.2 32 64 

30.0 25.3 32 64 

35.0 25.3 32 64 

40.0 25.4 32 64 

45.0 25.4 32 64 

50.0 25.2 32 64 

0.1 Ambient 24.6 64 64 

20.0 24.8 32 64 

22.0 25.1 32 64 

23.0 25.2 32 64 

24.0 25.3 32 64 

24.5 25.5 32 64 

25.0 25.5 32 64 

25.5 25.6 32 64 

26.0 25.7 32 64 

27.0 25.7 32 64 

28.0 25.8 32 64 

30.0 25.8 32 64 

35.0 25.8 32 64 

Total 880 1664 
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The data collection employed two different implementations of the passive terrestrial 
spectrometer configuration. First, the spectrometer was mounted on a tripod and used to view 
a variety of terrain backgrounds, both with and without SF6 being released in the field of view. 
Second, the spectrometer was mounted in a shock-absorbing assembly and placed in a 
helicopter with the field of view of the spectrometer being directed at the ground. The 
helicopter made aerial passes past a ground source of SF6. 

A total of 40,344 interferograms were collected in these field experiments. This data set 
was reduced to 4000 interferograms (2000 SF6-containing, 2000 background) through the 
application of a data set selection algorithm reported by Carpenter and Small [7]. The set of 
4000 interferograms was further subdivided randomly into a training set of 3000 interferograms 
for use in developing the digital filtering and pattern recognition methodology and a separate 
prediction set of 1000 interferograms used for testing. The SF6-containing and background 
interferograms were selected separately in order to maintain equal class sizes in both the 
training and prediction sets. Table 2 describes these data sets. The determination of whether 
or not an interferogram contained SF6 information was made by Fourier transforming the 
interferogram to the spectral domain, subtracting a background spectrum and visually inspecting 
the resulting difference spectrum for the presence of the S-F band at 945 cm'1. Through the 
application of this procedure, each of the 4000 interferograms was judged either an SF6- 
containing or a background interferogram. This assignment procedure is inexact when working 
with field data due to the changing infrared background emission in the passive terrestrial 
experiment. The difficulty in matching each spectrum to an appropriate background spectrum 
results in a variety of artifacts in the difference spectra that can obscure weak analyte signals. 
Nevertheless, we estimate that this visual inspection procedure has an assignment error rate no 
greater than 3-5%. Due to the physical movement of the sample into and out of the optical path 
over time, however, there is no better assignment procedure available. 

For the data analysis, the collected interferograms were transferred to a Silicon 
Graphics 4D/460 computer operating under the Irix operating system (version 4.0.5, Silicon 
Graphics, Inc., Mountain View, CA). The digital filtering and pattern recognition calculations 
reported here were performed on this system with original software written in FORTRAN 77 and 
C. Analysis of variance computations, the calculation of normal scores, and the construction of 
the main and interaction effects plots were performed with the Minitab statistical software 
package (version 10, Minitab, Inc., State College, PA) implemented on a Dell 466/L computer 
operating under Microsoft Windows (version 3.1) and MS-DOS (version 6.2, Microsoft, Inc., 
Redmond, WA). 

Results and Discussion 

Overview of Interferogram Analysis Methodology. The interferogram analysis techniques 
used in this work employed digital filtering and pattern recognition methods. The digital filtering 
method used implements a time-varying finite impulse response filter. This filter design 
technique employs interferogram data in the calculation of the filter and has been found to 
perform well in comparison to other filter design schemes [8]. The time-varying nature of the 
filter helps to match the filter to the rapidly damping exponential character of the interferogram 
signal. These filters have the form 
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f. n 
y[n] = E hn[i]x[n-on[ij] (1) 

1=1 

where y[n], the intensity of filtered interferogram point n, is computed from a convolution sum of 
fnterms. The summation is based on the products of an impulse response function, hn[i], and the 
intensities of selected points in the unfiltered interferogram, x[n-on[i]]. The points used in the 
unfiltered interferogram are specified relative to point n. The time-varying nature of this filter is 
achieved by having separate hn[i], on[i], and fn for each n. The design of the filter requires the 
specification of the filter frequency response function and a set of interferograms to use in the 
computation of the hn[i] and the selection of fn and the on[i]. The frequency response is held 
constant with time, but the optimal implementation of the filter in the time domain is allowed to 
vary with interferogram point (i.e., with time). For a given error level in the bandpass 
approximation achieved by the filter, this scheme allows filters to be generated with fewer 
coefficients than would be required with a fixed coefficient filter [8]. 

For the work reported here, separate filters were generated for the laboratory and open 
path data. The entire set of 2544 interferograms was used in the calculation of filters for the 
laboratory data, while the training set of 3000 interferograms was used with the open path data. 
These interferograms define the number of observations used in a multiple linear regression 
calculation of the hn[i] [8]. 

The frequency response and impulse response are Fourier transform pairs. The 
functional form (i.e., shape), bandpass width, and bandpass position of the frequency response 
are user-specified variables. The filter design computation attempts to achieve the desired 
shape, width, and position of the frequency response in a filter that can be applied directly to the 
interferogram through the use of eqn. 1. For this work, the bandpass shape was Gaussian, and 
the bandpass position and width constituted two of the variables to be explored [8].   Bandpass 
shapes other than Gaussian can be used although our previous work indicates that this variable 
is much less significant than either the bandpass position or width. 

Ones the interferogram has been filtered, recognition of the signature of a target 
compound is achieved through the application of pattern recognition techniques to the filtered 
interferogram segment. Pattern recognition methods treat an m-point interferogram segment or 
"pattern" as a vector in an m-dimensional space. Recognition of the signature of a target 
compound is based on clustering in the m-dimensional space of the points representing the 
filtered interferogram segments. If these points are clustered in a manner that allows them to be 
discriminated based on the presence of the target compound, pattern recognition techniques 
can be used to implement an automated procedure for estimating compound presence, given a 
filtered interferogram segment. 

The pattern recognition technique employed in this work was piecewise linear 
discriminant analysis (PLDA) [9]. PLDA is one of a number of general pattern recognition 
algorithms for use in classifying data vectors into two or more categories. It offers the advantage 
of handling nonlinear relationships among the data vectors while being computationally fast 
enough to be compatible with large data sets. In this regard, it offers several advantages over 
competing methods such as artificial neural networks. Through the use of a representative 
"training set" of data, PLDA computes the position of a set of linear surfaces in the data space in  ■ 
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Table 2 

Open Path Data 

Type 
of 

measurement 

Number of interferograms 

Training set Predicl tion set 

SFR-containing Background SFR-containing Background 

Stationary 1206 767 409 247 

Airborne 294 733 91 253 

Total 1500 1500 500 500 
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an effort to define boundaries between patterns belonging to different data categories or 
classes. In the remote sensing application, two data classes exist, corresponding to the 
presence (Class 1) or absence (Class 2) of a target compound. 

Each linear surface is defined by the locus of points lying orthogonal to an optimally 
positioned unit vector termed a weight vector or linear discriminant. The piecewise linear 
discriminant is defined by the set of individual weight vectors that together form a piecewise 
linear approximation to a nonlinear separating surface between the data classes. In the work 
described here, these vectors were computed in a stepwise manner. The first weight vector was 
positioned in an optimal orientation, followed by positioning of the second vector to form an 
optimal two-vector piecewise linear discriminant. Thus, calculation of the pth weight vector was 
based on the positioning of a vector to combine with the p-1 vectors previously computed to form 
a p-vector discriminant. 

One of the requirements for the piecewise linear discriminant is that each weight vector is 
"single-sided". This means that the vector defines a linear surface that partitions the data space 
such that one side of the surface contains members of only one data class. This "pure" side of 
the surface is distinguished from the other ("mixed") side which can contain members of all other 
data classes. In applying PLDA to interferogram analysis, we have established the convention 
that the pure side of the separating surface corresponds to compound-containing 
interferograms. 

Each weight vector is positioned through the use of numerical optimization techniques. 
The optimization seeks the optimal value of a response function which encodes the ability of the 
discriminant to classify patterns correctly based on their known class identities [13]. In addition, 
the response function penalizes weight vectors that are not single-sided. In our work, Simplex 
optimization was used to position the weight vectors. Applied to PLDA, Simplex optimization is 
based on the iterative movement of a set of candidate weight vectors, with each iteration 
attempting to replace one candidate vector with a new vector that achieves a more optimal value 
of the response function. In the work described here, the Simplex optimization was operated in 
a non-interactive manner based on a protocol developed through experience with the technique. 
This protocol employed a specified discriminant size (i.e., number of weight vectors comprising 
the piecewise linear discriminant), number of Simplex initializations used in computing each 
weight vector, and number of iterations performed before reinitializing the optimization. The 
initialization procedure required the specification of a "spanning constant", a numerical value 
used to form the initial set of weight vectors through perturbation of a single input vector. The 
input weight vectors used to start the Simplex optimization were computed directly by use of the 
Bayes linear discriminant procedure [21]. 

Once the piecewise linear discriminant is computed, the classification of any filtered 
interferogram segment, x,, can be performed as 

dj = max (w/x,, w2
Tx„ ..., wp

TXi) (2) 

el, > 0 I Class 1 (3) 
< 0 I Class 2 
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where d, is the discriminant score for xh computed as the maximum vector dot product formed 
between Xi and the p individual weight vectors (w„ w2,..., wp). By our convention, discriminant 
scores greater than zero signal data points (i.e., filtered interferogram segments) lying on the 
"compound-present" side of the piecewise linear discriminant. 

Description of Filter Design Variables Studied. The design of an optimal filter is a key 
step in applying the interferogram-based detection methodology described above to a new 
compound. The limit of detection of an analyte is largely based on the degree to which the 
values of four filter design variables or factors are optimized. The variables are: (1) filter width, 
(2) filter position, (3) interferogram segment length, and (4) interferogram segment starting 
position (relative to the centerburst position). 

Figure 2 depicts the first two variables. Shown are the frequency responses of two 
Gaussian-shaped bandpass digital filters (dashed lines) superimposed on a single-beam 
infrared spectrum exhibiting the SF6 absorption at 945 cm"1 (solid line). Both filters shown in 
Figure 2 are positioned centered on the analyte band. The filter is positioned near the analyte 
band so that those frequencies will pass through the filter. 

The width of a filter is an important factor in its effectiveness. As shown in Figure 2, the 
wider the filter, the more frequencies (both analyte and background) that will be allowed to pass 
through the filter. An important characteristic of filter design is that decreasing the width of the 
filter frequency response requires an increase in the number of points in the impulse response 
(hn[i] in eqn. 1). The number of computations required to implement the filter is thus related to 
the filter width. 

In the design of an optimal filter, a joint effect on filter effectiveness is expected between 
filter position and filter width. This can be rationalized by noting that wide filters do not need to 
be centered directly on the analyte band to pass an equivalent number of analyte frequencies 
compared to narrow filters centered directly on the band. 

Figure 3 depicts the other factors involved in digital filter generation. Shown is an 
interferogram collected when SF6 was present in the optical path of the spectrometer. The 
interferogram segment length determines the amount of information that the pattern recognition 
analysis technique can use to distinguish between compound-containing and background 
patterns. The limit of detection is determined by the amount of analyte information present 
relative to the "noise level" defined by the variation in the background patterns. Although longer 
interferogram segments generally outperform shorter segments, the use of shorter segments is 
computationally more efficient. The goal is therefore to use an interferogram segment length as 
short as possible without negatively affecting the limit of detection. 

The interferogram segment starting point is also an important factor. Because the 
interferogram signal decays exponentially, the closer the interferogram segment is to the 
centerburst region, the more analyte information will be present. However, more background 
information will also be present In segments near the centerburst than in segments displaced 
from the centerburst. This can be rationalized by considering that, after filtering, the 
interferogram has been reduced to contain the contributions of only two spectral features: the 
analyte band and the infrared background signature. By applying the filter, the infrared 
background has been truncated in frequency to coincide with the frequency response of the 
filter. This can be seen visually in Figure 2 where the overall infrared background is considered 
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to be the single beam spectrum minus the SF6 absorption band. Application of either filter 
depicted in the figure truncates the single beam spectrum to coincide with the frequency 
response of the filter. The SF6 band is then superimposed on the frequency response function. 
The two spectral features remaining after application of the filter differ in width. The 
corresponding representations of these features in the interferogram also differ in width, with the 
representation of the narrow analyte spectral feature decaying more slowly than that of the wider 
frequency response function. This suggests that some optimal segment starting point exists in 
the interferogram that balances the overall decay of the analyte signal vs. the difference in rates 
of decay between the analyte and background signals. 

It can be argued that a joint effect on filter effectiveness must exist between 
interferogram segment length and starting position. The effect of having less analyte information 
for the pattern recognition analysis in short segments can be partially overcome by judiciously 
choosing a segment starting position closer to the centerburst. Conversely, longer segments 
may still have adequate analyte information for the pattern recognition analysis using 
interferogram segments distant from the centerburst. The above discussion suggests that an 
additional joint effect which must be considered is the relationship between interferogram 
segment starting position and filter width. These variables are correlated due to the change in 
the rate of decay of the interferogram signal with filter width. Thus, the use of narrow filters in 
conjunction with interferogram segments near the centerburst will include more background 
information than would be included if the same segment were used with a wider filter. 

Optimization of the four filter design variables involves setting discrete values or levels 
for each factor, followed by the generation and testing of filters based on the selected values. 
The key to computational efficiency in the optimization lies in minimizing the number of filters 
that must be generated and tested. This must be done judiciously, however, as the 
relationships among the factors determine the degree to which the optimal value of one factor 
depends on the value of another factor. 

The above discussion illustrates that, on theoretical grounds, several pairwise 
relationships must exist among the four factors. Other less obvious two-way, three-way, and 
higher order relationships among the factors may also exist. The computational effort in the 
optimization must be made where it will provide the most benefit and where the strongest 
relationships among the factors exist. For example, an extensive joint study of two factors is of 
little real value if those factors are not strongly related. Optimization of these factors could be 
performed independently, thereby eliminating the need for a joint study in which the values of 
both factors are studied together. Thus, knowledge of the significance of each factor and the 
relationships among the factors is critical in devising a protocol for the optimization that will: (1) 
allocate the greatest resources to the optimization of the variables that are most significant in 
influencing the limit of detection; (2) lead to an overall optimal or near-optimal filter design; and 
(3) minimize the computational requirements of the optimization. The goal of this work is to 
establish such a protocol for the filter optimization by formally studying the significance of the 
relationships among the four filter design variables. 

Experimental Design. To study the relationships among the four variables and to find the 
optimal variable settings, a formalized statistical experimental design was performed [22-26]. 
Experimental designs allow the examination of the main effects of the experimental variables, as 
well as the joint or interaction effects among the variables. One main effect is defined for each 
variable, encoding the effect on the experimental result of changing the settings of the variable. 
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By contrast, an interaction effect is defined for each combination of variables. These effects 
encode the influence on the experimental result of making joint changes in the variable settings. 
To ensure complete exploration of these main and interaction effects, all possible combinations 
of the different factor levels must be examined. This type of experimental design is termed a full 
factorial design. 

In a full factorial experimental design, a response function must be used that describes 
the overall performance or the effectiveness of the variable settings. Such a function has the 
form 

R = f( plfp2 p„) (4) 

where R is the value of the response function for given settings of the n variables, ft. The 
response function numerically encodes the degree to which the variable settings produce an 
optimal result. In the present application, an optimal result is the lowest possible limit of 
detection of the target analyte. Together with the factor settings, the response function defines a 
response surface whose shape dictates the manner in which the individual variables and their 
joint effects impact on the optimal limit of detection. Each main and interaction effect is 
expressed in the units of the response function. 

The response function chosen for this study was the actual pattern recognition detection 
performance observed from application of PLDA to the filtered interferogram data. The filter 
used in each case corresponded to specific settings of the four filter design variables. Through 
the use of the training set data in which the classifications (SF6-containing or background) were 
known, the classification performance achieved by the pattern recognition analysis was chosen 
to serve as an indicator of the degree to which the factor settings were optimal. 

A full factorial design study was performed based on the variables and levels specified in 
Table 3. Five filter bandpass widths, five filter positions centered around the SF6 band at 945 
cm1, five interferogram segment starting points relative to the centerburst, and five interferogram 
segment lengths were studied. The choice of levels for each variable was based on previous 
experience in applying the interferogram-based methodology to the detection of SF6. The use of 
filter widths significantly wider than the SF6 band width (fwhm = 10 cm1) is based on our 
experience that the inclusion of some background information helps the pattern recognition 
methodology discriminate between analyte-containing and non-analyte interferograms. In 
addition, the filter generation procedure used here tends to produce filters with poor attenuation 
characteristics when a very narrow filter bandpass is specified (e.g., < 30 cm'1 fwhm). 

In a full factorial design study based on four variables and five levels for each, a total of 5 
x 5 x 5 x 5 = 625 possible combinations of the variables are possible. For each variable 
combination, two replicate training procedures were performed resulting in 1250 evaluations of 
the response function.   Replication was performed by changing the signs of the spanning 
constants used in the training protocol. This causes the Simplex optimization to be initialized 
differently and thus results in a different final discriminant. The purpose of replication is to obtain 
a value for the experimental error present in the iterative training procedure. The experimental 
error will be employed in the statistical analysis of the results. 

For each set of factor settings, a digital filter was generated, and a four-vector piecewise 
linear discriminant was computed. The value of R in eqn. 4 was defined as the number of SF6- 
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Table 3 

Variables and Levels Used in Factorial Design 

Variable Levels 

Tilter bandpass width (wd) 36.4, 45.4, 54.5, 63.6, 72.7 cm1 

Filter bandpass position (fp) 937.0, 940.9, 944.7, 948.6, 952.4 cm1 

Interferogram segment length (si) 60,80,100,120, 140 points 

"Interferogram segment location (sp) Starting point 75,100,125,150,175 

aFull width at half-maximum (fwhm). 

"Relative to interferogram centerburst. 
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containing patterns correctly classified by the four-vector discriminant. Background 
interferograms were not considered in computing the response function, as the single-sided 
requirement of the piecewise linear discriminant dictates that no background interferograms in 
the training set will be misclassified. 

As indicated in Table 1, the total number of SF6-containing patterns in the training set 
was 880. The set of factor settings which classified the most interferograms correctly consisted 
of interferogram segment starting point 100, segment length 140 points, filter position 937.0 
cm1, and filter width 45.4 cm"1 (fwhm). This set classified 860 of the 880 patterns correctly (97.7 
%). The factor setting which classified the least number of patterns correctly was interferogram 
segment starting point 75, segment length 60 points, filter position 937.0 cm-1, and filter width 
36.4 cm'1 (fwhm). This set classified 671 active patterns correctly (76.3 %). The mean and 
standard deviation of the number of patterns correctly classified in the 1250 cases were 803.5 
and 19.5 patterns, respectively. Figure 4 is a histogram showing the distribution of the number 
of patterns correctly classified. 

Analysis of Variance. Analysis of variance (ANOVA) techniques [22-26] were used to 
estimate the main and interaction effects from the PLDA results. In ANOVA, response function 
values corresponding to the variable settings are fit to a least-squares model that separates the 
variance in the response function into assignable causes (i.e., main and interaction effects) and 
random variation. The model employed in this study was a fixed effect model of the form 

Y = u + s\ + sp + fp + wd + sixsp + slxfp + slxwd + spxfp + spxwd (5) 

+ fpxwd + slxspxfp + slxspxwd + slxfpxwd + spxfpxwd + slxspxfpxwd + e 

where Y is the response function value for a specific combination of variable settings, u is the 
overall mean value of the response function and e is the error term that estimates the random 
variation. The other terms in the model are the main and interaction effects based on the 
combinations of interferogram segment length (si), segment starting position (sp), filter 
bandpass position (fp), and bandpass width (wd). For example, sixsp is the two-way interaction 
effect between segment length and segment starting position. 

The results from the ANOVA study are shown in Table 4. The first column in the table is 
the source of the variance (i.e., main and interaction terms), while the second column lists the 
degrees of freedom corresponding to each term. The third and fourth columns are the sum of 
squares and mean square, respectively, for each main and interaction term. The significance of 
each main and interaction effect can be evaluated by performing F-tests to compare each mean 
square to the mean squared error. The computed F-values are listed in the fifth column in Table 
4. The F-values can be employed to compute a probability that a given effect is significant. The 
null hypothesis associated with each probability is that, within sampling variability encoded in the 
degrees of freedom, the corresponding mean square is equal to the mean squared error. 
Probabilities near zero indicate that the null hypothesis can be rejected with a high degree of 
confidence (i.e., the effect is significant). 

The interpretation of the results in Table 4 is not straightforward. The probabilities 
computed from the F-values indicate that all main and interaction effects are statistically 
significant (probability < 0.05). This result is not surprising due to the small error in the iterative 
training procedure employed in the pattern recognition. This error is computed as the square 
root of the mean squared error in Table 4 ([59.0]1/2 = 7.7 patterns). 
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Table 4 

Analysis of Variance Table 

Source Degrees of Freedom Sum of Squares Mean Square F 

si 4 475306.4 118826.6 2014.2 

sp 4 88174.0 22043.5 373.7 

fp 4 5553.5 1388.4 23.5 

wd 3 10987.8 2747.0 46.6 

slxsp 16 46980.1 2936.3 49.8 

slxfp 16 5080.0 317.5 5.4 

slxwd 16 1671.9 104.5 1.8 

spxfp 16 4366.5 272.9 4.6 

spxwd 16 53382.6 3336.4 56.6 

fpxwd 16 18700.2 1168.8 19.8 

slxspxfp 64 7924.5 123.8 2.1 

slxspxwd 64 18874.9 294.9 5.0 

slxfpxwd 64 11453.3 179.0 3.0 

spxfpxwd 64 45693.0 714.0 12.1 

slxspxfpxwd 256 39623.4 154.8 2.6 

Error 625 36872.0 59.0 

Total 1249 870644.1 
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Some of the effects are clearly more significant than others based on their F-values. 
Using the relative size of the F-value as the criterion for the significance of an effect in 
influencing pattern recognition performance, all main effects are again judged significant. The 
two-way interaction terms that were expected to be influential (i.e., slxsp, spxwd, and fpxwd) are 
also found statistically significant by this criterion. The other three two-way interactions, as well 
as three of the four three-way interactions and the four-way interaction are judged not significant 
based on their lower F-values. The only significant three-way interaction was spxfpxwd. The 
importance of this interaction confirms that an adjustment of filter position impacts the optimal 
filter width and that optimization of these two parameters must consider the segment starting 
position. 

The conclusions drawn from the ANOVA results displayed in Table 4 are based on the 
assumptions that the model described by eqn. 5 is appropriate and that the model residuals are 
drawn from a normal distribution. The appropriateness of the model determines whether the 
error estimate is valid. This is an important consideration, given that the F-values are based on 
the computed mean squared error. Furthermore, correct interpretation of the computed F-values 
is based on the assumption of normality. 

To evaluate these issues, the residuals from the least-squares fit of eqn. 5 were studied 
graphically. Figure 5 is a plot of the 1250 residuals vs. the corresponding fitted values predicted 
by the model. Although the linear correlation coefficient is 0.00, the cone-shaped appearance of 
the plot suggests the presence of nonconstant variance. 

The issue of normality was addressed by constructing a normal probability plot of the 
residuals. Blom's method [27] was used to estimate the residuals that would be obtained from a 
normal distribution. A linear or near-linear relationship between the actual and estimated 
residuals provides evidence that the residuals are normally distributed. Figure 6 plots the 
actual vs. ejtimated residuals. This plot exhibits a sigmoidal shape with a linear correlation 
coefficient of 0.924. For n = 1250, this value of the correlation coefficient is not statistically 
significant. 

One approach to overcoming the lack of a normal distribution and nonconstant variance 
in the model residuals is to perform a suitable transformation of the response variable. The 
purpose of the transformation is to compute response values which are more normally 
distributed. One general transformation approach is the Box-Cox transformation [24,28]. After 
applying a suitable Box-Cox transformation to the response values, the ANOVA calculations 
were repeated. The results showed that after transformation, most of the nonconstant variance 
was removed. The residuals were also more normally distributed. A plot of actual vs. estimated 
residuals yielded a linear correlation coefficient of 0.967. However, the F-values for each of the 
effects were nearly the same as before transformation. Thus, making the response values more 
normally distributed by transformation had little effect on the conclusions from the ANOVA study. 

While performing the Box-Cox transformation, an interesting observation was made. The 
presence of nonconstant variance and the lack of a statistically significant normal distribution 
was found to be due to the large interaction effect present between interferogram segment 
starting point and filter width (spxwd). From the histogram shown in Figure 4, it was found that 
response function values from variable combinations including interferogram starting point 75 
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comprised the lower tail of the histogram. Thus, the ANOVA model (eqn. 5) could not 
adequately account for this large effect. This hypothesis was tested by removing those 
response function values and using ANOVA to reestimate the main and interaction effects. The 
model residuals were now found to contain constant variance and the normal probability plot of 
the residuals showed only a slightly sigmoidal shape with a linear correlation coefficient of 0.990. 
These results suggest that removing the response values corresponding to filters computed with 
interferogram starting point 75 would be a viable approach. However, we do not feel such a 
drastic measure is justified. The conclusions drawn from this ANOVA study are based on the 
relative magnitudes of the F-values and not their associated probabilities. This approach 
produces a clear distinction between the significant and insignificant effects. In this case, the 
presence of nonconstant variance and a nonnormal distribution do not negatively impact the 
study. 

Protocol for Filter Design. Using the conclusions drawn from the ANOVA results, a 
protocol for the filter generation was developed. Since the interactions among interferogram 
segment starting position, bandpass width, and bandpass position are highly significant, these 
variables must be optimized together. Based on the computed F-values in Table 4, 
interferogram segment length and starting point were shown to have the greatest influence on 
filter performance. Further evidence for this conclusion is observed in Figure 7. This figure 
displays a series of plots showing the mean response function score for each variable setting 
(solid lines) and the overall mean response function score for all 1250 experiments (dashed 
line). The variable settings on the horizontal axis are in numerical order identical to Table 3. For 
example, the left plot shows the mean response function score for the five variable settings for 
interferogram segment length. Within this plot, the leftmost variable setting indicated by the tick 
on the horizontal axis corresponds to a segment length of 60, while the rightmost variable setting 
corresponds to a segment length of 140. 

Figure 7 can be used to estimate the main effects for each variable setting. The main 
effect for a given variable level is computed as the mean response function score for all 
treatments involving that level minus the overall mean response function score. The main 
effects are employed to make comparisons about the effect of a variable setting on the 
response. To interpret main effects properly, it is important to remember that the estimated error 
of the pattern recognition training procedure was found to be approximately 8 patterns and 
should be employed as a reference for any comparisons. 

Based on the magnitudes of the main effects, interferogram segment length and starting 
point had the most influence on the pattern recognition performance. As expected, there is a 
steady improvement in the pattern recognition performance as the interferogram segment length 
increases. The difference between the main effects for the longest and shortest interferogram 
segment lengths was 55 patterns. This represented the largest difference in main effects 
between two settings for any of the four variables. 

Due to the large main effects, it is also evident that segment starting position is the 
second most influential parameter. There is a steady improvement in performance as the 
interferogram segment approaches the centerburst region of the interferogram (i.e., 
interferogram segment starting point approaches zero). However, the main effect for the closest 
segment starting point (75) is less than for starting point 100.  This suggests that the majority of 
the SF6 signal is compressed into a short region of the interferogram located after the bandpass 
filter signal has damped to zero. For the narrow bandpass filters, the bandpass filter information 
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does not appear to damp to zero until the region near point 100 in the interferogram. Thus, the 
narrow filters based on interferogram segments near the centerburst will perform poorly and 
wide filters based on the same segment will perform well. This association between segment 
starting position 75 and filter width is the cause of the large F-value present for the spxwd 
interaction term in the ANOVA model. 

The main effects for each level of filter position and width do not follow such a discernible 
pattern, however. The main effect for each filter position setting increases as the bandpass is 
moved to higher frequencies. However, the difference in the magnitudes between the largest 
and the smallest main effects is small (~6) indicating that filter position is less influential than 
segment length or starting position on pattern recognition performance and is highly dependent 
upon the settings of the other variables. 

The main effects for each level of filter width increase as the width of the bandpass 
increases. This is partially due to the spxwd interaction effect mentioned above. The difference 
between the main effects for the widest and narrowest settings is slightly larger (~9) than the 
experimental error in the training procedure. 

Based on the above discussion, the order for optimizing the filter design variables and a 
recommended number of variable levels can be determined. The interferogram segment 
starting position, bandpass position, and bandpass width variables should be studied first. As 
many levels as possible for interferogram segment starting position should be studied. Because 
the magnitudes of the main effects for the levels of segment starting position were larger than 
the main effects of the levels for filter position and width, a greater effort should be used to find 
the optimal starting position since it greatly affects pattern recognition performance. In addition, 
interferogram segment starting position is highly dependent on the variable setting for bandpass 
filter width, thereby justifying the need for additional levels to be studied. The width of the 
analyte band will determine how close to the centerburst the segment can be located. For a 
narrow analyte band such as the S-F stretching band at 945 cm"1, an interferogram segment 
starting at point 100 is close enough to achieve good pattern recognition performance. For 
wider analyte absorption bands such as the C-0 stretching band of methanol, the segment can 
be located as close as 25 points from the centerburst [11]. 

Based on the plots in Figure 7, the small main effects associated with the settings for 
filter position indicate that only a few filter position settings need to be chosen for any 
optimization study. The bandpass position setting should be chosen to coincide with the 
targeted spectral band of the analyte, although the optimal position may be shifted from the band 
center, especially in cases in which nearby spectral bands of interfering species are present [12]. 

Bandpass filter width is the least predictable filter generation variable because it is so 
highly correlated with both interferogram segment starting point and bandpass filter position. For 
example, wider filters may perform better, on average, but the optimal filter may have a narrow 
bandpass. In this study, the filter associated with the largest response score had a width of 45.4 
cm"1 (second to narrowest). Figure 7 suggests that on average, however, the widest filter is the 
best. Thus, in any optimization study, several levels of bandpass filter width should be studied. 

Despite one interaction term (slxsp) being significant, we believe segment length can be 
optimized independently of the other variables. This can be justified by viewing Figure 8. This 
figure is a matrix of six interaction plots displaying the mean response function scores for all 
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possible combinations of the two variables involved in each two-way interaction. The vertical 
scale is the same for all plots in the matrix and is in units of the response function. The 
horizontal scale displays the levels of the column variable. The lines (response curves) in each 
plot correspond to the mean response function score at the levels of the row variable. 
Analogous to Figure 7, the settings for each variable are in numerical order. The plot of a 
specific interaction is located at the intersection of the row and column of the two variables. For 
example, the upper leftmost plot is the slxsp interaction plot with the 5 response curves 
corresponding to the settings for segment length. Each response curve has 5 points 
corresponding to the different settings for segment starting position. 

The interpretation of these plots is straightforward. Parallel response curves within each 
plot indicate that little or no interaction is present among the variables. It is clear from these 
plots that the two-way interactions involving interferogram segment length (top row) show 
response curves in a series of steps with the longer segment length settings having larger mean 
response function scores. The remaining three plots show significant interaction among the 
variables. The response curves in these plots are often overlapping and are not parallel. This 
would indicate that segment length can be optimized independently from the other variables due 
to the less significant interaction effects. 

Further evidence for this conclusion can be seen by studying the slxsp interaction plot in 
more detail. The response curves for the fourth and fifth segment length settings (i.e., 120 and 
140 points) are more parallel than the response curves for the other settings. This indicates that 
the interaction effects between interferogram segment length and starting position are more 
significant at the shorter interferogram segment lengths, thereby suggesting that segment length 
can be optimized independently from segment starting position if segment length is set at 120 
points or greater. Since the computed F-values in Table 4 suggest that the interaction effects 
between segment length and the other two variables are less significant than the interaction with 
segment starting position, fixing the setting for segment length at 120 points or greater should 
also effectively minimize the impact of the other interactions. Thus, under this scheme, segment 
starting point, filter position, and filter width should be optimized together while the setting for 
segment length is held fixed at 120 points or greater. Segment length would be optimized 
independently after the optimal settings for the other three variables have been determined. 

Because segment length has the most influence on pattern recognition performance, 
several levels should be included in an optimization study.   While shorter interferogram 
segments are computationally more efficient, longer segments consistently achieve better 
results. Another important factor to consider in choosing the segment length settings to study is 
the width of the analyte band. For wider analyte bands, the analyte information is compressed 
into a smaller region of the interferogram than for narrow analyte bands due to the greater 
damping rate of the interferogram signal. At a certain segment length, dependent upon the 
compound being studied, the improvement in pattern recognition performance becomes 
negligible and further study of longer segment lengths is not needed. Segment lengths of 
greater than 150 points appear to define the point of diminishing returns for most analytes. 

Validation of Protocol. To demonstrate that the conclusions drawn from the SF6 
laboratory data were valid, the filter generation protocol was applied to actual SF6 field FTIR 
remote sensing data. This study was performed by calculating four bandpass filters with 
variable settings that should yield good pattern recognition results and four bandpass filters with 
variable settings that should yield poor results. The variable settings chosen for the "good" 
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filters were those which achieved the four best pattern recognition results with the laboratory 
data. One of the interesting observations of this study was that poor pattern recognition results 
can be obtained by two different strategies. One is to use variable settings corresponding to 
narrow filters and short interferogram segments located near the centerburst. The other is to 
use short interferogram segments remote from the centerburst. In either case, the majority of 
the SF6 information is missed. Thus, both types of "poor" filters should be represented in the 
validation of the protocol. Two variable settings were chosen for each type of "poor" filter. The 
four "good" filters were assigned sequence numbers 1 -4, while the "poor" filters were numbered 
5-8. These variable settings are shown in Table 5. For each filter, the mean classification 
percentage for the SF6 laboratory data is also shown in Table 5. The mean values were 
computed across the two replicates for each filter. For the laboratory data, the average numbers 
of patterns correctly classified for the "good" and "poor" filters were 852.5 (96.9%) and 717.3 
(81.5%), respectively. 

Open Path Interferogram Data Analysis. Field measurements are more challenging than 
laboratory measurements due to the widely varying background conditions present. The impact 
of this increased background variation is less separation in the data space between the 
compound-containing and background interferogram segments. Thus, use of the same training 
protocol that was employed with the laboratory data will typically result in poorer pattern 
recognition performances for the field data. 

A five-vector discriminant was computed and optimized by use of the same training 
protocol employed with the laboratory data. The training set of 3000 interferograms was used in 
positioning the discriminants. Subsequently, the discriminants were applied to the 1000 test 
interferograms in the prediction set. The training and prediction results are presented in Table 6. 

The mean percentages of SF6-containing patterns correctly classified in training using 
the open path data were 96.6% for the "good" filters and 85.5% for the "poor" filters. The 
average percentages of all patterns correctly classified in the prediction set for the open path 
data were 94.8% for the "good" filters and 89.5% for the "poor" filters. Thus, the "good" variable 
settings outperformed the "poor" variable settings by greater than 10% in the training step, 
analogous to the results obtained with laboratory data. These results validate the protocol 
devised for the filter generation and show that it is applies to open path as well as laboratory 
data. The occurrence of prediction classification percentages that are greater than the 
corresponding training percentages is an artifact of this data set and does not affect any of the 
conclusions drawn. 

Conclusions 

The results obtained in this study indicate that a protocol for designing a near-optimal 
bandpass filter can be developed. Conclusions based on the laboratory data and confirmed with 
the open path data show that interferogram segment length has the greatest impact on pattern 
recognition performance and can be studied independently from the other variables. The three 
remaining variables must be studied together due to the large interaction effects present among 
them. Interferogram segment starting position was shown to be the second most influential 
variable in terms of pattern recognition performance and should be studied in greater detail than 
either filter bandpass position or filter width. 
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Table 5 

Filter Variable Settings and Classification Performances for Open Path Data 

Filter 
number 

Segment 
length 

(si) 

aSegment 
starting point 

(sp) 

Filter position 
(fp) 

(cm1) 

"Filter width 
(wd) 

(cm'1) 

Classification 
performance 
(Lab data) 

Good 

1 140 100 937.0 45.4 97.4 

2 140 75 952.4 74.7 97.0 

3 140 100 944.7 74.7 96.5 

4 140 75 944.7 74.7 96.5 

Poor 

5 60 75 937.0 36.4 77.0 

6 60 75 940.9 36.4 78.5 

7 60 175 940.9 36.4 85.2 

8 60 175 944.7 63.6 85.4 

a Relative to interferogram centerburst 
b Full width at half-maximum (fwhm) 
c Mean classification percentage computed for the two replicates 
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Table 6 

Training and Prediction Classification Performance for Open Path Data 

Filter number Training performance (%) \rediction performance (%) 

Good 

1 95.9 94.6 

2 96.8 95.8 

3 96.8 94.4 

4 96.9 94.3 

Poor 

5 82.8 88.7 

6 85.0 89.2 

7 86.4 89.0 

8 87.6 91.0 
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While the work reported here focused on the detection of SF6, this protocol should be 
valid for use in developing a detection scheme for other compounds. Given knowledge about 
the analyte band position and width, an optimization study of the variables employed in filter 
generation can be completed in a more efficient manner than was previously done. By studying 
the variables which have the most impact on pattern recognition performance in greater detail, 
fewer filters will need to be computed to develop a near-optimal detection scheme. 

In a general sense, the conclusions drawn from this study may have an impact on other 
areas of interferogram-based data analysis. Of particular relevance is the quantitative analysis 
of FTIR interferogram data. Work in this laboratory has demonstrated the effectiveness of 
obtaining quantitative information from bandpass filtered interferogram data [29]. The same 
decisions regarding the design of the optimal bandpass filter and interferogram segment are 
also pertinent in this work. 

Automated Detection of Trichloroethylene by Fourier Transform 
Infrared Remote Sensing Measurements 

Remote sensing measurements based on FTIR spectroscopy are becoming increasingly 
popular for the remote detection of airborne volatile organic compounds (VOCs) [1].   The target 
compound for the research described here is trichloroethylene (TCE), a toxic solvent that serves 
as the focus of significant environmental monitoring efforts [30]. The detection of airborne TCE 
vapor is thus important in a variety of monitoring applications, and FTIR remote sensing 
measurements represent one option for implementing an automated TCE detection procedure. 

The most flexible application of an FTIR remote sensor is the use of the instrument to 
view a naturally occurring background source of infrared energy. This "passive" spectral 
measurement allows the sensor to be a highly portable air monitor that can interrogate the 
atmosphere over large distances. The principal limitation of this approach, however, is the 
sensitivity of the measurements to changes in the infrared background emission present in the 
field of view (FOV) of the spectrometer [1,31-34]. The detected background radiance is the 
resultant of contributions from the infrared radiation source, the intervening atmosphere, and the 
instrumental response function of the spectrometer [35]. The spectral features of analyte species 
are superimposed on this varying background and therefore the background information must be 
suppressed if the analyte signatures are to be observed reliably. The conventional laboratory 
approach of collecting a representative background spectrum for use in ratioing out or 
subtracting the non-analyte features is very difficult given the instability of the background. 

The interferogram-based analysis methodology described above is focussed on 
overcoming this limitation by use of novel data analysis strategies for suppressing the 
contributions of the infrared background without performing an actual background measurement 
[4,10,11,35,36]. As described previously, this methodology is based on the direct analysis of 
short segmonts of FTIR interferogram data and combines bandpass digital filtering and pattern 
recognition techniques to achieve the detection of VOCs. The filtering step extracts the analyte 
signature from collected interferograms while the pattern recognition procedure uses the filtered 
interferogram data as unique patterns to determine the presence or absence of targeted VOCs. 
In addition to allowing the extraction of analyte information from a variety of backgrounds, the 
restriction of the analysis to a short interferogram segment has potential benefits in reducing the 
data collection requirements of the measurement and in simplifying the design of the instrument. 

Previous research in our laboratory has demonstrated the ability of this methodology to 
extract analyte signatures from interferogram data and thereby eliminate the contributions of 
terrain backgrounds and adjacent spectral bands of interfering compounds [4,11,36]. In the work 
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presented here, this compound detection problem is made significantly more challenging by 
combining sky and water backgrounds with the terrain backgrounds used previously. The ability 
of the methodology to implement an automated detection of TCE in the presence of this extreme 
background variation is assessed. 

Experimentation 

Instrumentation. The FTIR spectrometer employed in this work was a Brunswick 
emission spectrometer. (Brunswick Technical Group, DeLand, FL). The modulator for the 
spectrometer is based on the flex-pivot 'porch swing' Michelson interferometer design. By use of 
an interferometer mirror velocity of 1.269 ± 0.017 cm/sec [37], the infrared energy was 
modulated onto a Hg:Cd:Te detector maintained at 77 K with a Magnavox closed-cycle Stirling 
cooler. The detector was narrow band and optimized for use in the 8-12 urn atmospheric 
transmission window. The spectrometer FOV was 1.5° and was reduced to 0.5° with an 
antireflection coated germanium refractive optic telescope (Intellitec, DeLand, FL) designed for 
open-air monitoring applications. 

The interferometer was interfaced to a Dell System 486P/50 IBM PC compatible 
computer (Dell Computer, Austin, TX) operating under MS-DOS (Microsoft, Redmond, WA). The 
data acquisition was performed by use of the MIDAS package [38]. Interferogram points were 
acquired at every eighth zero crossing of the reference laser, giving a maximum spectral 
frequency of 1975 cm1. A total of 1024 sampled interferogram points allowed calculation of 
spectra with points spaced at approximately 4 cm"1. 

Methods. Interferogram data were acquired with three types of passive remote sensing 
measurements. The three experiments were termed (1) open-air terrestrial, (2) passive cell 
terrestrial, and (3) passive cell laboratory measurements. The three approaches were used in 
order to obtain variation in both TCE concentrations and in the infrared backgrounds observed. 

In the open-air terrestrial measurements, TCE vapor was released into the atmosphere 
with an evaporative emission source for which the concentrations were not controlled. This 
measurement restricted the spectrometer FOV to ensure that the vapor cloud filled the FOV. 
The spectrometer was located from 5 to 25 m from the vapor emission source. Radiances from 
terrain, water, low-angle sky, or some combination of both sky and terrain served as the infrared 
backgrounds for these experiments. 

In the passive cell terrestrial experiments, pure TCE vapor was introduced into a gas cell 
and various terrain, water, and sky backgrounds were viewed through the cell. For these 
measurements, the cell was held by a bracket attached to the spectrometer housing. The TCE 
concentrations were not controlled. The cell used had a 62 cm2 aperture and a 8.2 cm path 
length. The cell windows were composed of low density polyethylene (0.0005 in. thickness). 

The passive cell laboratory experiments employed the same gas cell. In these 
measurements, the concentrations of TCE were obtained by evaporation of various solution 
mixtures of TCE in carbon tetrachloride (CCIJ [39]. The solutions were prepared by mixing 
reagent grade TCE (Aldrich, Milwaukee, Wl) and reagent grade CCI4 (MCB Manufacturing, 
Cincinnati, OH). The volume fraction of TCE in CCI4 ranged from 1 to 1/64, corresponding to 
vapor pressures of 69.2 and 0.95 Torr, respectively, at 25 °C [40]. The vapor pressures of TCE 
were computed by use of the Wilson equation, converted to ppm by assuming ideal gas 
behavior, and scaled by the cell path length to obtain path averaged concentrations in units of 
ppm-m. For TCE volume fractions of 1,1/2,1/4,1/8,1/16,1/32, and 1/64, the corresponding 
path-averaged concentrations were 7466, 3679,1748, 842, 410, 205, and 102 ppm-m, 
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respectively. A 4x4-inch laboratory extended blackbody infrared source (Model SR-80, Cl 
Systems, Agoura, CA) was viewed through the cell to simulate conditions found in open-air 
monitoring applications. The temperature of the source was varied from 5 to 50 °C with an 
accuracy of ±0.03 °C and a precision of ±0.01 °C. 

Assembly of Data. In this discussion, interferograms containing TCE signatures will be 
termed TCE-active" interferograms, while those containing no evidence of TCE presence will be 
termed "TCE-inactive" or "background" interferograms. All interferograms collected with TCE in 
a cell were deemed to be TCE-actives and used in assembling the data sets employed in 
developing and testing the TCE detection algorithm. Visual inspections of spectra 
corresponding to the lowest TCE concentrations in the passive cell laboratory data revealed no 
evidence of the TCE spectral bands at 845 and 938 cm"1. This confirmed that TCE signals at or 
near the limit of detection were present in the data set. The open-air terrestrial data were 
examined for the presence of both TCE spectral bands. The collected interferograms were 
Fourier processed to single-beam spectra, followed by subtraction of a similarly processed 
single-beam background spectrum known to contain no TCE features. If clear visual evidence 
of both TCE spectral bands was observed, the corresponding interferogram was judged TCE- 
active and placed in a pool of analyte-active interferograms for possible inclusion in the final data 
sets. Spectra judged indeterminate in terms of TCE presence were removed from the data 
analysis entirely. Background interferograms collected when no TCE was present were 
inspected for data integrity and then placed in a separate pool for possible inclusion in the final 
data sets. The total number of interferograms considered for use was 159,002. 

The pools of inspected TCE-active and background interferograms were used to 
assemble two separate training and prediction data sets for use in evaluating the TCE detection 
methodology. The two training data sets were used to optimize the digital filtering and pattern 
recognition parameters of the TCE detection algorithm. The prediction data sets were withheld 
from these optimizations and were employed subsequently as independent test sets for use in 
determining the rate of positive and false detections afforded by the optimized detection 
algorithm. A subset selection procedure developed by Carpenter and Small was used for the 
selection of training and prediction sets that were representative of the total set of interferograms 
[7]. Both training and prediction data sets had TCE-active and TCE-inactive interferograms. 

The first data set assembled was used to evaluate the ability to detect TCE against 
infrared backgrounds similar to those we have encountered previously in work with other 
compounds. The details of the training and prediction sets comprising data set A are presented 
in Table 7. The training data set had 49,152 interferograms, while the corresponding prediction 
set had 60,000 interferograms. As indicated in Table 7, the data sets contained interferograms 
collected with blackbody, terrain, and water backgrounds, some of which included manmade 
objects such as buildings and vehicles in the FOV. In addition, acetone, methyl ethyl ketone 
(MEK), and sulfur hexafluoride (SF6) were present during the collection of some of the field 
background interferograms to serve as potential interferences. SF6 has an absorption band 
centered at 945 cm'1 which overlaps to a large extent with the 938 cm'1 band of TCE. The 
primary absorption bands of acetone (1217 cm1) and MEK (1175 cm'1) do not overlap with either 
of the TCE absorption bands, but they provide a means for testing the spectral selectivity of the 
interferogram-based analysis. In the passive cell laboratory data, CCI4 was present with TCE 
during the collection of all of the analyte-active interferograms except for those with a TCE 
volume fraction of 1. Some of the background interferograms were collected with pure CCI4. 
The CCI4 band centered in the region of 790 cm'1 does not overlap with the TCE band at 845 
cm'1, but it does provide a further test of the frequency selectivity of the filtering procedure. 
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Table 7 

Description of Data Set A 

Type of interferograms Training set Prediction set 

TCE-actives 

Passive cell laboratory (with CCI4) 

Open-air/passive cell terrestrial 
TCE with building/tree 
TCE over water 
TCE with blackbody 

Sub-total 

TCE-inactives 

Passive cell laboratory 
No chemicals 
Pure CCI4 

Sub-total 

Open-air/passive cell terrestrial 
No chemicals 
Acetone over water 
Acetone with building/tree 
Acetone with blackbody 
MEK with building/tree 
MEK with blackbody 
SFR with vehicle 

6000 4624 

Sub-total 

Total 

10040 
924 

3036 
14000 

316 
184 

3640 
1085 

11078 
4842 
7212 

224 
571 

500 

28652 

49152 

2919 
90 

119 
3128 

36366 
1605 

8566 
2361 
1282 
861 

1037 
135 
35 

37971 

14277 

60000 
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One of the goals of this research was to test the interferogram-based methodology with 
the most challenging data set possible. Data set B, described in Table 8, was assembled to 
meet this goal. The training and prediction sets contained 10,000 and 60,000 interferograms, 
respectively. This data set incorporated low-angle sky backgrounds (elevations 20° and 45° 
from the horizontal) into the same mix of backgrounds employed in data set A. This is the first 
time that interferograms with sky backgrounds have been used in testing our compound 
detection methodology. 

Data Analysis. Analysis of data set A was achieved by implementing the pattern 
recognition code using a distributed computing model. To achieve the best overall performance, 
the iterative part of the algorithm was executed on a Silicon Graphics Onyx R4400 computer 
(Silicon Graphics, Mountain View, CA) while a section of the algorithm that could be parallelized 
was implemented on a Thinking Machines CM-5E system equipped with 32 nodes (Thinking 
Machines, Bedford, MA). The parallel code was written in CM FORTRAN, the data-parallel 
FORTRAN language for the CM-5E. 

In addition to the CM-5E/Onyx implementation, a similar approach was employed for 
joint use of the Onyx with a Maspar MP-2 equipped with 16,384 nodes (Maspar, Sunnyvale, CA). 
The parallel code was ported to MPL, the data-parallel C language on the Maspar. For the MP-2 
code, it was important for performance reasons to have a data set size that was a multiple of 
16,384. For this reason, the size of the training set for data set A was set at 49,152. The 2560 
pattern recognition runs completed were split between the CM-5E/Onyx and MP-2/Onyx 
implementations. Precision tests indicated that results obtained with the two computer 
configurations were effectively identical. 

Analysis of data set B was performed on a Silicon Graphics 4D/460 R3000 computer 
using the Irix operating system (version 5.2). A single processor was employed. The data 
analysis software was written in FORTRAN 77 and compiled with version 4.0.1 of the Silicon 
Graphics FORTRAN 77 compiler (optimization level 3). Fourier transform and multiple linear 
regression computations performed as part of the digital filter design work used subroutines from 
the IMSL library (IMSL Inc., Houston, TX). 

Results and Discussion 

Spectral Characteristics. In this study, the two spectral bands of TCE centered around 
845 and 938 cm"1 were used as the basis for detecting the compound. The band in the region of 
845 cm"1 arises from an in-plane asymmetric rotational twist around carbon centers while the 
band near 938 cm"1 is due to an out-of-plane bending mode of the entire molecule [41,42]. The 
full width at half height (FWHH) of the bands at 845 and 938 cm'1 are approximately 26 and 28 
cm"1, respectively. 

Figure 9A is an example single-beam spectrum obtained by Fourier processing an 
interferogram collected with a tree background when TCE was present in the FOV of the 
spectrometer. This figure shows the characteristic detector response envelope associated with 
the spectrometer. The dip in the spectrum in the region of 900 cm*1 is a feature of the detector. 
No TCE absorption features are visible in the single-beam spectrum due to their small 
magnitudes. Figure 9B is a similar single-beam spectrum obtained by use of an interferogram 
collected when TCE was viewed against a sky background. A large number of spectral features 
are observed superimposed on the detector envelope due to the presence of trace atmospheric 
species viewed over a long path length. No TCE features can be observed in the single-beam 
spectrum. A principal challenge in the work presented here was the inclusion in the same data 
set of infrared backgrounds that vary as much as those depicted in Figure 9. 
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Table 8 

Description of Data Set B 

Type of interferograms Training set Prediction set 

TCE-actives 

Passive cell laboratory (with CCI4) 

Open-air/passive cell terrestrial 
TCE with building/tree 
TCE over water 
TCE with blackbody 
TCE with sky 

Sub-total 

TCE-inactives 

Passive cell laboratory 
No chemicals 
Pure CCI4 

Sub-total 

Open-air/passive cell terrestrial 
No chemicals 
Acetone over water 
Acetone with sky 
Acetone with building/tree 
Acetone with blackbody 
MEK with building/tree 
MEK with sky 
SF6 with vehicle 

1000 6000 

Sub-total 

Total 

484 6809 
77 582 

325 2899 
1614 3710 

595 
405 

1322 
552 

1621 
281 

32 
1275 
381 
36 

2500 

1000 

5500 

10000 

14000 

11849 
1151 

7506 
3489 
3191 
5041 

993 
4307 
2078 
395 

13000 

27000 

60000 
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Figure 9. Single-beam FTIR spectra collected with tree (A) and low-angle sky (B) infrared 
backgrounds in the FOV of the spectrometer. The many narrow features in the sky background 
derive from the observation of trace atmospheric species over a long path length. 
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Figures 10A and 10B are examples of TCE absorbance spectra. These spectra were 
obtained by ratioing computed single-beam spectra collected when TCE was present to similarly 
processed background spectra and converting the resulting transmittance values to absorbance. 
Although Figure 10 shows examples of absorption features only, emission spectral features are 
also encountered routinely in remote FTIR measurements. The plotted spectra illustrate the 
wide range of spectral band intensities encountered. Figure 10A is an example of an intense 
TCE spectrum, with peak absorbances of approximately 0.17 and 0.16 absorbance units (AU) 
for the 845 and 938 cm1 bands, respectively. By contrast, Figure 10B is an example of a weak 
TCE spectrum, with peak intensities of approximately 0.0022 and 0.0020 AU for the 
corresponding bands. Figures 9 and 10 illustrate that an effective TCE detection method must 
be able to extract a large dynamic range of TCE absorption and emission signals from infrared 
backgrounds that exhibit tremendous variation. 

Overview of Data Analysis Methodology. The interferogram-based methodology used in 
this work was developed in our laboratory to extract analyte spectral features directly from FTIR 
interferogram data. As described previously, the approach is based on the application of a 
bandpass digital filter to a segment of the interferogram to isolate specific frequencies 
associated with a spectral band of the target analyte. Pattern recognition methods are applied 
subsequently to the filtered interferogram segment to implement an automated yes/no decision 
regarding the presence of the analyte. A separate background or reference measurement is not 
required because the combination of a judicious choice of interferogram segment and the 
application of the bandpass filter serve to remove the analyte feature from the background. 

The digital filtering is tailored to extract only the frequencies contributing to the spectral 
bands of the analyte. For TCE, the frequencies contributing to the intensity of spectral bands 
centered at 845 or 938 cm"1 are selectively extracted from the corresponding interferograms by 
applying a digital filter tailored to the specific spectral region of interest. The resulting filtered 
interferogram is reduced to a superposition of a series of sinusoidal waves corresponding to the 
specific frequencies passed by the filter. The filter passband characteristics such as position 
and width for a Gaussian-shaped filter are specified in the spectral (i.e., wavenumber) domain 
and the filter is generated for application in the interferogram (i.e., spatial) domain by use of 
suitable design methods. The interferogram-domain filter approximates the frequency response 
specified in the wavenumber domain. The digital filter design technique employed in this study 
is an implementation of a finite impulse response (FIR) digital filter with time-dependent 
coefficients [8]. 

Application of the filter rejects background information located at frequencies outside the 
passband of the filter. In effect, the infrared background emission is truncated to the shape of 
the passband of the filter. Within the passband, the broad infrared background emission is 
removed by windowing the interferogram to isolate a segment displaced from the centerburst 
region. The purpose of windowing can be understood by realizing that the interferogram 
representation of the broad background emission damps faster than the corresponding 
representations of narrower spectral features. Past some point in the interferogram, the 
representation of the broad background has largely damped to zero, while the signatures of 
narrower features still have significant amplitude. Thus, by making judicious choice of the 
interferogram segment for use in the data analysis, much of the infrared background information 
can be eliminated. 

Through this procedure, TCE signatures can be isolated directly from an interferogram 
that is too short for use in obtaining an accurate spectrum via the Fourier transform. Due to the 
intrinsic assumption of the Fourier transform that the signal is sampled over infinite time, 
extremely distorted spectra are produced from short interferogram segments of 50-200 points. 
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Figure 10. Absorbance spectra of TCE computed from interferograms collected during remote 
sensing measurements. Both strong (A) and weak (B) TCE spectra are encountered during 
these measurements. 
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Application of the bandpass filter directly to the interferogram allows frequency selectivity to be 
incorporated into the analysis without the necessity of meeting the requirements of the Fourier 
transform. 

The next step in the algorithm is to determine whether the information extracted by the 
digital filter is actually due to the analyte rather than to some interfering species with a spectral 
band located in the passband of the filter. This is implemented in the pattern recognition step. 
The position of the targeted spectral band within the digital filter bandpass and the shape of the 
band are both encoded in the profile of the filtered interferogram segment. The unique profile 
reflecting both the intensity and shape of the filtered interferogram segment is utilized by the 
pattern recognition methodology in deciding whether the analyte is present or not. 

Filtering an interferogram segment of p points produces a filtered intensity value for each 
point. The filtered intensities can be considered as a p-dimensional vector characterizing the 
filtered interferogram segment. This vector can be represented as a point or "pattern" in a p- 
dimensional space, where the coordinate axes correspond to intensities of specific points in the 
filtered interferogram. If the filter is effective in extracting the interferogram-based representation 
of the TCE spectral band, then the data space formed from filtered interferogram segments 
should contain separate clusters for TCE-active and TCE-inactive segments. The clustering of 
these segments in the data space according to TCE presence allows the use of pattern 
classification techniques to make a yes/no decision regarding the presence of TCE information 
in any filtered interferogram. 

The choice of an appropriate pattern recognition method depends on the distribution of 
points in the p-dimensional data space. Previous work has demonstrated that the data space 
formed from the filtered interferogram segments is characterized by apparent nonlinear 
boundaries between the analyte-active and analyte-inactive patterns [9]. Achieving the greatest 
sensitivity in discriminating the TCE-active and TCE-inactive patterns thus requires a pattern 
recognition method that can accomodate these nonlinear boundaries. Two such methods are 
piecewise linear discriminant analysis (PLDA) [9,13] and artificial neural networks [43]. 

As described earlier, PLDA is based on the construction of separating surfaces or 
discriminants that define regions of the data space occupied by points belonging to specific 
categories of data (e.g., TCE-active and TCE-inactive). A numerical optimization procedure is 
used to find the optimal locations of these separating surfaces. Unknown points corresponding 
to new filtered interferograms can be classified or assigned membership to one of the data 
categories by computing the orientation of the point relative to the discriminants. PLDA employs 
multiple linear hyperplanes to approximate a nonlinear surface separating the different data 
categories. The number of hyperplanes to employ is the principal configuration parameter 
associated with PLDA. 

Neural networks are a general class of nonlinear modeling techniques that can be 
adapted to pattern classification applications. The output of the network can be used to assign 
an input pattern to the data categories being modeled by the network. The network output is 
generated by transforming the input pattern (e.g., a filtered interferogram segment) through a 
series of linear and nonlinear functions. The network can be configured in a very general way to 
incorporate greater or lesser degrees of nonlinearity in generating the output. This flexibility 
gives the network excellent capabilities in modeling nonlinearities, but it also means that 
configuring the network can be a challenging optimization problem. 

PLDA was selected for use in the TCE detection problem due its simpler configuration 
requirements. Given the large sizes of data sets A and B and the fact that several variables in 

50 



the analysis already require optimization (e.g., the interferogram segment and bandpass filter 
specifications), it was judged undesirable to have to spend additional computational time in 
seeking the optimal network configuration. Furthermore, since the neural network optimization is 
typically initialized with a random network, the optimization is very susceptible to the starting 
conditions. Replication of the optimization with different initial networks is typically performed to 
overcome this problem. This requirement further increases the computational requirements 
associated with the use of neural networks in the TCE detection problem. This requirement for 
replication can be overcome in PLDA by the use of a direct calculation that provides a good 
starting point for the discriminant optimization [9]. 

PLDA was implemented in the TCE detection by use of a stepwise procedure to compute 
the individual discriminants that approximate the nonlinear separating surface between the TCE- 
active and TCE-inactive data classes. The first discriminant was optimized to classify correctly 
as many TCE-active patterns as possible. In optimizing the discriminant placement, 
misclassified TCE-inactive patterns were heavily penalized, resulting in a discriminant that is 
said to be "single-sided." This discriminant defines a boundary in the data space in which only 
TCE-active patterns lie on the "pure" side of the boundary and a mix of TCE-active and TCE- 
inactive patterns may lie on the "mixed" side. When the discriminant position had been 
optimized, the TCE-active patterns on the pure side of the discriminant were removed from 
consideration, and a second discriminant was optimized to separate additional TCE-active 
patterns from the mixed group. This procedure was continued until no more TCE-active patterns 
could be separated (i.e., until no additional single-sided discriminants could be generated) or 
until a maximum of four (data set A) or five (data set B) discriminants was reached. 

After the discriminants are positioned, any p-dimensional filtered interferogram segment 
can be classified as either TCE-active or TCE-inactive by the calculation of its discriminant 
score. The discriminant score is a threshold value computed by the application of the piecewise 
linear discriminant to the filtered interferogram segment. Filtered interferogram segments with a 
discriminant score greater than zero are judged to contain the TCE signature, based on the 
orientation of the vector representation of the segment relative to the previously computed 
separating surface. The magnitude of the discriminant score indicates the distance of the 
filtered interferogram segment from the separating surface. 

Overview of Parameter Optimization for TCE Detection. The interferogram-based 
methodology described above was applied to develop an automated detection algorithm for 
TCE. The variables optimized in this study were the bandpass filter position, bandpass filter 
width, interferogram segment length, and segment location. The two filter variables determine 
the frequency range over which the filter operates, thereby defining the degree of spectral 
selectivity incorporated into the interferogram-based analysis. The interferogram variables 
determine the selectivity of the analysis with respect to spectral band width, thus helping to 
remove the effects of broad features of the infrared background. The four variables were 
optimized for both absorption bands of TCE. 

In the work described earlier, it was established that filter position, filter width, and 
interferogram segment location must be optimized in a joint experimental design due to 
relationships that exist among these variables. It was also found that as long as a segment 
length of 120 points or greater was employed in the optimization of the other three variables, the 
segment length variable could be optimized alone after the optimal values for the other variables 
had been determined. 

Analysis of Data Set A. For data set A, a factorial experimental design study was 
conducted to optimize the filter position, filter width, and interferogram segment starting point. 
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Based on the optimization protocol described above, the interferogram segment size was held 
constant at 121 points during this optimization. A set of 128 filters was generated at sixteen filter 
positions from 848.5-964.2 cm'1 and with eight different nominal filter widths ranging from 85-200 
cm"1 (FWHH). Twenty segment locations were used. The first segment was 40/160 where the 
numerator denotes the starting segment point and the denominator indicates the ending point of 
the segment relative to the interferogram centerburst. This segment window was moved by five 
points until the last segment of 135/255 was reached, resulting in a total of 20 segments tested. 
All combinations of the three variables were investigated by performing the PLDA calculation 
described above. This resulted in a total of 16 x 8 x 20 = 2560 PLDA runs. For each run, the 
training set was used to attempt to compute a piecewise linear discriminant consisting of four 
individual discriminants. For 139 of the 2560 runs, the variable settings performed so poorly that 
the first discriminant of the piecewise linear discriminant could not be made single-sided. These 
combinations were removed from further analysis, leaving 2421 valid discriminants. For 53 
cases, only the first discriminant could be made single-sided, while for 76 cases only two single- 
sided discriminants could be computed. For 117 additional cases, only three single-sided 
discriminants were obtained. This left 2175 cases in which all four discriminants were single- 
sided. In evaluating the results for the 2421 valid discriminants, the maximum number of single- 
sided discriminants was used. 

The 2421 valid discriminants were applied to the 60,000 interferograms in the prediction 
set. These interferograms were not used at any prior stage during the filter generation or the 
computation of the discriminants. The prediction results were observed to track the training 
results almost exactly. This is due to the use of a training set which was large enough to be 
globally representative of the various terrain, water, and blackbody backgrounds encountered. 

The percentage of correctly classified TCE-active interferograms and the percentage of 
false detections were studied as a function of the FWHH of the filter bandpass and the starting 
point of the interferogram segment. Many different combinations of filter width and segment 
location were observed to achieve both a high TCE detection percentage and a low rate of false 
detections. The only poor combinations corresponded to the narrower filters coupled with the 
segment locations closest to the centerburst. This can be rationalized by considering that the 
narrower filters truncate the infrared background emission to a narrow spectral feature which 
takes relatively long to damp out in the interferogram. Thus, the TCE signature near the 
centerburst is still obscured by the background. The most promising combinations 
corresponded to the narrower filters coupled with segment locations relatively far from the 
centerburst. These filters and segments achieved both very high detection percentages and a 
low rate of false detections. 

To explore this region further, the 2421 prediction results were reduced to the 212 cases 
in which the filter FWHH was less than 120 cm"1 and the segment starting point was greater than 
point 100 (relative to the centerburst). The prediction results for these cases were studied as a 
function of filter bandpass position. This study revealed that TCE information can be extracted 
reliably with filters positioned across the range of 850-960 cm"1. Furthermore, no trends were 
noted in the false detection rate with respect to filter position. This suggests that spectral 
interferences are not contributing to the classification results. In terms of reliable TCE 
detections, the most stable results were observed with filters positioned from 860-910 cm1. 
Given that the filters employed here were on average approximately 100 cm"1 wide at the 
midpoint of the passband, the filters positioned in the 860-910 cm"1 region clearly isolate 
information from both TCE spectral bands. The fact that both spectral bands are of similar width 
(see Figure 10A) suggests that the TCE information from each band will be represented in the 
interferogram similarly with respect to location. 
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Overall, the prediction results obtained with data set A indicate that TCE can be detected 
with a reliability approaching 99% and with a false detection rate less than 0.5%. The reliability 
of these detections ranks with the best we have obtained in our remote sensing work. We turn 
now to the question of whether similarly reliable detections can be made when complex sky 
backgrounds are incorporated into the data sets. 

Analysis of Data Set B. The analysis of data set B consisted of two phases. In the first 
phase of the study, 125-point interferogram segments were employed. The segment locations 
studied were 51/175,76/200,101/325, and 126/250, where the numerator and denominator 
indicate the starting and ending points of the segments, respectively, relative to the centerburst. 
Both 845 and 938 cm'1 TCE spectral bands were used independently for the analysis. Five filter 
positions and three nominal filter widths were employed for each band. Table 9 lists the filter 
positions along with the actual FWHH values for the passbands of the computed filters. The 
FWHH values were computed based on the actual frequency responses of the filters. Due to 
the presence of sky backgrounds in data set B, no filters centered between the two TCE bands 
were employed in order to reduce the degree to which spectral features associated with 
atmospheric species were passed by the filters. 

The experimental design described above resulted in a total of 120 piecewise 
discriminant calculations (4 segments x 5 filter positions x 3 filter widths = 60 experiments for 
each of the two TCE spectral bands). The computed discriminants were tested through the use 
of the separate prediction set, and the overall training and prediction results were tabulated. 

For the filters based on the 845 cm*1 band, the average training classification result was 
approximately 96% in terms of the degree of recognition of TCE-active interferograms. The 
average prediction result was approximately 92%, also in terms of TCE recognition. For the 
filters based on the TCE band at 938 cm"1, the corresponding average training and prediction 
results were approximately 96% and 94%, respectively. The rate of false detections in prediction 
was generally less than 1%. 

In the second phase of the study, the interferogram segment location was optimized 
further in conjunction with the segment length. In this study, the ten best performing 
combinations of filter position and width found during the initial work were used. These filters 
are indicated in Table 9. Segment sizes of 50,70, 90, and 110 points were investigated. 
Without going past point 240 (relative to the centerburst), the segment starting points were 
varied from points 51-191 in steps of 20 points. This produced 8, 7,6, and 5 segments of 
lengths 50,70,90, and 110, respectively. A total of 260 piecewise discriminant calculations 
were performed for each spectral band of TCE (10 filters x (8 + 7 + 6 + 5) segments). For each 
spectral band and segment length, Table 10 lists the results for the best performing 
filter/segment combinations. The best results were identified on the basis of the percentage of 
overall correct classifications. This is defined as the combined percentage of TCE-actives and 
TCE-inactives correctly classified. Table 10 also lists the percentages of TCE-actives correctly 
classified in both training and prediction and the false detection rate. For both bands of TCE, 
the percentage of TCE-actives correctly classified in training is slightly greater than the 
corresponding prediction result. The false detection rate is less than 1%. For both TCE bands, 
the training and prediction results track each other. 

From the results in Table 10, the filter/segment combination indentified by a filter position 
of 939.5 cm"1, filter FWHH of 123.4 cm"1, and segment based on points 111/220 was selected for 
further study. To provide a more complete picture of the prediction results for this case, the 
classifications were subdivided on the basis of various chemical species present or the type of 
infrared background. Table 11 lists the number of prediction set interferograms correctly and 
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Table 9 

Digital Filters Used in the Analysis of Data Set B 

Filter 
number 

845 cm'1 TCE spectral band 938 cm"1 TCE spectral band 

Filter position 
(cm"1) 

FWHH 
(cm"1) 

Filter position 
(cm-1) 

FWHH 
(cm1) 

1 843.1 86.9 931.8a 100.3 

2 843.1a 82.6 931.8a 127.3 

3 843.1a 113.0 931.8a 146.6 

4 845.1 69.6 935.8a 100.3 

5 845.1a 69.6 935.8a 127.3 

6 845.1a 95.6 935.8a 142.7 

7 847.0a 95.6 939.5 100.3 

8 847.0 69.6 939.5a 123.4 

9 847.0a 75.6 939.5 142.7 

10 848.9a 78.3 943.4 96.4 

11 848.9a 78.3 943.4 123.4 

12 848.9 82.6 943.4a 142.7 

13 850.8 104.0 947.3a 96.4 

14 850.8a 69.7 947.3 119.6 

15 850.8a 86.9 947.3a 142.7 

'Filter selected for optimization of interferogram segment position and length. 
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Table 10 

Pattern Recognition Classification Results for Optimal Filters/Segments 

Filter position and 
FWHH (cnr1) 

Interferogram 
segment location 

(size) 

Training 
(%)a 

Prediction (%) 

TCE-actives TCE-actives False 
detection 

Total 

845 cm-1 band: 

843.1 82.6 
850.8 86.9 
848.9 78.3 
850.8 69.7 

131/180 (50 points) 
131/200 (70 points) 
131/220 (90 points) 
71/180 (110 points) 

96.4 
96.4 
98.0 
96.6 

92.5 
93.9 
95.2 
94.7 

0.7 
0.8 
0.5 
0.7 

97.0 
97.4 
98.1 
97.8 

938 cnr1 band: 

931.8 127.3 
947.3 142.7 
939.5 123.4 
939.5 123.4 

71/120 (50 points) 
151/220 (70 points) 
131/220 (90 points) 

111/220 (110 points) 

95.8 
97.2 
98.1 
98.5 

92.5 
93.9 
95.8 
96.2 

0.5 
0.8 
0.8 
0.5 

97.2 
97.4 
98.1 
98.4 

aDue to the single-sided requirement of piecewise linear discriminants, no false detections occur 
in training. 
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incorrectly classified for various interferogram categories. The category of interferograms 
primarily responsible for the missed TCE-actives was the passive cell laboratory data. Only 
5389 of the 6000 laboratory interferograms were correctly classified (89.8%). By comparison, 
13850 of the 14000 open-air/passive cell terrestrial TCE-active interferograms were successfully 
detected (98.9%). Of the 611 missed detections among the laboratory interferograms, 308 and 
261 interferograms corresponded to path averaged TCE concentrations of 102 and 205 ppm-m, 
respectively. These were the two lowest concentration levels collected. For the remaining 42 
missed detections, 20,19,1, and 2 interferograms corresponded to path averaged 
concentrations of 410, 842,1748, and 7466 ppm-m, respectively. 

To understand these results, the origin of the spectral signal in a passive FTIR remote 
sensing experiment must be considered. As described by Kroutil, et al. [35], the signal detected 
by a passive remote sensor at a given wavenumber can be approximated as 

P=[TJtNb+(1-TaTZNlB (6) 

where P is the power of the light incident on the sensor, Ta is the transmittance of the intervening 
atmosphere between the infrared background and the sensor, T,is the transmittance of the 
target analyte cloud, Nb is the spectral radiance of the background, Nt is the radiance of a perfect 
blackbody emitter at the same temperature as the analyte cloud, and B is a parameter related to 
the optical collection efficiency of the sensor. Tt in eqn 6 can be expressed as e"CTC/, where als 
the absorptivity of the analyte, c is the analyte concentration, and / is the optical path length of 
the analyte cloud. Thus, the analyte-specific information is embodied in T„ with the strength of 
the analyte signal determined by the product of a, c, and /. The TaTJNb term describes the 
absorption of background photons by the analyte, while the (1 - TaTf)A/fterm describes the 
emission of photons from the analyte. An inspection of eq 1 reveals that the net analyte signal is 
keyed to the difference between Nb and Nt For example, if A/,= Nb, eqn 6 reduces to P= Nß. 
This is the case in which the rates of absorption and emission are identical, thus resulting in no 
detectable analyte signal. This is the inherent limitation of the passive remote sensing 
measurement, as the ability to detect an analyte is dependent on the existence of a sufficient 
difference in radiance between the analyte cloud and the infrared background. As defined by 
the Planck function, the radiance is determined by the temperature of the emitting blackbody. 
Thus, in practice, detection is keyed by a difference in temperature between the analyte and the 
background. 

The laboratory interferograms were collected by varying both the concentration and 
temperature of the background. The analyte temperature was not controlled, but was measured 
during the data collection. Replicate interferograms were collected at each combination of these 
variable settings, and these replicates are represented in the prediction set. Thus, for each 
combination of concentration and temperature difference, the prediction results can be used to 
compute a classification percentage. For the 102 (circles) and 205 (triangles) ppm-m 
concentrations, Figure 11 plots the percentage of successful TCE detections vs. temperature 
difference in °C. Temperature differences less than zero correspond to TCE emission signals, 
while positive temperature differences indicate TCE absorptions. The effects of temperature 
difference and concentration on the ability of the interferogram-based algorithm to detect TCE 
are clearly indicated by the curves in the figure. The horizontal dashed line in Figure 11 marks 
95% correct classification. If this is used as a criterion for a successful TCE detection, the 
curves in Figure 11 indicate that at 102 and 205 ppm-m, respectively, temperature differences of 
approximately 10.5 and 6.9 °C are required to detect TCE absorptions. These limiting 
temperatures are indicated in the figure by the vertical dashed lines. Since both larger 
concentration and a greater temperature difference contribute to an increase in the analyte 
signal, it is reasonable that a smaller temperature difference is required to detect TCE 
successfully at the higher concentration. 
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Table 11 

Pattern Recognition Prediction Results by Interferogram Type 

Interferogram type and 
total number 

Interferogram segment location (size in points) 

71/120(50) 
Correct  Missed 

151/220(70) 
Correct Missed 

131/220(90) 
Correct Missed 

111/220(110) 
Correct Missed 

TCE-actives 

Passive cell laboratory 
(with CCI4) 
6000 4783 1217 4968     1032 5291 709 5389 611 

Open-air/passive cell 
terrestrial 

14000 13715 285 13808       192 13874 126 13850 150 

TCE-inactives 

Passive cell laboratory 
13000 12959 41 12847        153 12882 118 12960 40 

Open-air/passive cell 
terrestrial 
No chemicals 
7506 7467 39 7474          32 7486 20 7478 28 

Acetone over water 
3489 3489 0 3477          12 3471 18 3486 3 

Acetone with sky 
3191 3177 14 3168          23 3172 19 3173 18 

Acetone with tree 
5041 5027 14 4968          73 4954 87 4991 50 

Acetone with BBa 

993 993 0 993            0 992 1 991 2 
MEK with sky 

3083 3071 12 3073          10 3076 7 3077 6 
MEK with building/tree 

3302 3294 8 3293           9 3297 5 3300 2 
SF6 with vehicle 

395 332 63 382          13 354 41 361 34 

Blackbody infrared source in spectrometer FOV. 
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As noted above, 42 of the 611 misclassifications among the laboratory interferograms 
corresponded to the higher TCE concentrations. Here again, the key was the temperature 
difference. For example, with the 7466 and 1748 ppm-m data, respectively, 93.1% and 98.1% 
correct classifications were achieved with temperature differences of less than 1.0 °C. For the 
410 ppm-m data, however, only 73.9% correct classification was obtained with a temperature 
difference of 1.3 °C. Thus, defining an effective limit of detection in a passive remote sensing 
measurement requires consideration of both the concentration and the temperature difference. 

Since the laboratory interferograms were collected under conditions of a controlled 
infrared background, it is possible to compute conventional TCE absorbance spectra by use of 
background single-beam spectra collected under the same background conditions (i.e., the 
same Nb) as the TCE spectra. This allowed the computation of spectral signal-to-noise (S/N) 
ratios for the two combinations of concentration and temperature difference in Figure 11 that are 
closest to the 95% classification threshold (i.e., 102 ppm-m/11.1 °C and 205 ppm-m/7.2 °C). 
For each combination, nine interferograms were selected at random from among the replicates 
in the prediction set and absorbance spectra were computed. For the 938 cm"1 spectral band, a 
baseline region was defined and second-order polynomial baseline models were computed by 
polynomial regression. The spectral noise level was computed as the standard deviation of the 
baseline points about the calculated baseline model. The baseline contribution was subtracted 
from the spectral band, and the resulting peak maximum was taken as the spectral signal. 
These signal and noise values were then ratioed to obtain the spectral S/N ratio. For the 102 
ppm-m/11.1 °C and 205 ppm-m/7.2 °C combinations respectively, the average S/N ratios of the 
938 cm'1 TCE band across the nine spectra were 2.4 and 3.8, respectively. This confirms that 
the 95% detection threshold in the interferogram-based analysis is occurring in the region of the 
conventional limit of detection in a spectral analysis (i.e., a S/N ratio of 3.0). 

An inspection of Table 5 also reveals that inclusion of the sky backgrounds has not 
caused an increase in the rate of false detections. The classification percentages for the 
interferograms collected with sky backgrounds are not significantly different from the results 
obtained with other background types. The effect of the inclusion of sky backgrounds appears 
to be a slight reduction in the ability to detect TCE, as evidenced by the lower training and 
prediction classification percentages for the TCE-active interferograms obtained with data set B 
relative to the results obtained with data set A. This result is due to the setup of the piecewise 
linear discriminant calculation to be biased against false detections. As noted previously, the 
single-sided requirement of the computed discriminants dictates that false detections are heavily 
penalized in the training set. Thus, increasing the variation among the TCE-inactive 
interferograms through the inclusion of sky backgrounds results in weak TCE-active 
interferograms being obscured in the data space. In this case, a discriminant cannot be 
positioned to separate the weak TCE-actives without causing false detections. 

The potential problem of spectral interferences can be studied by considering the false 
detection rate for interferograms collected in the presence of chemical species other than TCE. 
Among the species present, the interference due to SF6 is most pronounced. For the eight 
filter/segment combinations detailed in Table 10, the SF6 false detection rate ranges from 2.3- 
15.9%. Overall, the effect of SF6 presence is most severe for the filters based on the TCE band 
at 938 cm1. This is understandable, given the SF6 band location of 945 cm'1. As expected, 
acetone and methyl ethyl ketone do not interfere significantly (false detection rates < 1%) due to 
the location of their principal spectral bands at 1217 and 1175 cm"1, respectively. The 
information in these bands has been removed from the interferograms through the use of the 
bandpass filters. 
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As noted previously, the implementation of the piecewise linear discriminant procedure 
produces a discriminant score which indicates the distance of the interferogram segment to the 
closest discriminant boundary. Positive discriminant scores confirm the segment lies on the 
TCE-active side of the boundary and negative scores indicate TCE-inactive interferograms. 
Figures 12-13 illustrate the discriminant score output derived from this procedure for two subsets 
of the prediction set. Figure 12 plots discriminant scores for 750 open-air/passive cell terrestrial 
TCE-active interferograms collected with terrain, sky, and water backgrounds, along with 1123 
passive cell laboratory TCE-actives collected at different background temperatures and 
concentrations. Figure 13 is a corresponding plot for 1548 TCE-inactive interferograms with 
various terrestrial backgrounds. These TCE-inactives included the presence of MEK, acetone, 
and SF6 collected with sky and terrain backgrounds. 

The various interferogram types are grouped together and labeled in the two figures. 
The laboratory interferograms in Figure 12 are grouped by concentration and the temperature of 
the background. During the data collection, the temperature of the background was varied in 
steps of 5 °C from a minimum to a maximum. For example, the label, 45/10, in Figure 12 
indicates that at a path averaged TCE concentration of 7466 ppm-m, the temperature of the 
blackbody source was varied from 45-10 °C in steps of 5°C. 

The results in Figure 12 demonstrate that the discriminant scores for the TCE-active 
interferograms vary over the range from 0.0 to 0.2. Missed detections are restricted to the 
region just below the 0.0 threshold. The discriminant scores of the laboratory interferograms 
clearly contain information about the combination of concentration and temperature difference. 
Across the collected laboratory interferograms, the temperature of the analyte was relatively 
constant, ranging from 18-21 °C. Thus, the background temperatures indicated in Figure 12 
correlate with absolute temperature difference on either side of the analyte temperature. The 
discriminant scores approach the 0.0 threshold as the background temperatures approach the 
analyte temperature. The discriminant scores then increase at background temperatures of 15 
and 10 °C as the temperature difference increases and the spectral transitions change from 
absorption to emission. These trends in the discriminant scores provide further confirmation that 
the discriminant boundaries lie at the instrumental detection limit of TCE. 

Probability-Based Classifications. One disadvantage of the PLDA procedure described 
above is the arbitrariness of the use of a fixed 0.0 discriminant score threshold in performing a 
classification. Statistically-based pattern recognition methods have the ability to associate a 
probability with a classification result on the basis of the distribution characteristics of the training 
set. However, even though PLDA is a nonparametric pattern recognition method in terms of its 
empirical placement of the discriminant boundaries, the use of a large data set allows the 
construction of a reference distribution that can be employed to assign a classificiation 
probability to the discriminant score of an unknown pattern. 

The implementation of a probability-based PLDA classification can be demonstrated by 
considering that the discriminant scores for the TCE-inactive interferograms in Figure 13 lie in 
the range of -0.007 to 0.004. The problem discussed previously of false detections in the 
presence of SF6 is clearly apparent. However, the majority of the discriminant scores 
corresponding to the false detections lie very near the 0.0 threshold. This suggests that instead 
of using 0.0 as the decision threshold, false detections may be reduced by calculation of a 
probability-based threshold. In such an approach, the decision threshold would be chosen 
based on the likelihood of a given discriminant score to produce a correct classification. 

To test this idea, the 60000 interferograms in the prediction set of data set B were used 
to construct a reference distribution of discriminant scores. Discriminant scores were obtained 
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by use of the piecewise linear discriminant based on the optimal filter/segment combination 
described above (filter position 939.5 cnr\ filter FWHH 123.4 cm"1, segment 111/220). These 
60000 discriminant scores ranged from -0.0172 to 0.282. This range was divided into bins of 
size 0.001, and the classification percentages were computed for a given bin based on the 
correct and incorrect classifications of the interferograms whose discriminant scores fell within 
that bin. The population sizes of the 301 bins ranged from 0 to 16644. The 21 bins with no 
interferograms ail corresponded to discriminant scores > 0.249. These bins were assigned a 
classification percentage of 100.0. Figure 14 plots the computed classification percentages vs. 
discriminant score. As expected, the resulting smooth curve indicates that the percentage of 
correct classifications decreases near the 0.0 threshold. If 95% correct classification is used as 
a probability-based threshold, it is observed that the computed classification percentages 
intersect the threshold at two locations: -0.0017 and 0.0019. In implementing the interferogram- 
based TCE detection, this discriminant score range could be used as a region of uncertain 
classification. In effect, this procedure defines a nonparametric statistic that allows a confidence 
level to be assigned to each classification. 

As indicated in Table 11, for the optimal filter/segment combination referenced above, 
183 false TCE detections occurred, including 34 false detections when SF6 was present. If the 
probability-based threshold is used, 141 of the 183 false detections are eliminated. For the SF6 
case, 28 of the 34 false detections are avoided. The overall false detection rate is reduced to 
0.1 % (42/40000), and the rate of false detections due to SFj is reduced from 8.6 to 1.5%. The 
use of this criterion does reduce the sensitivity of the algorithm to TCE, however. An additional 
1657 TCE-active interferograms would be classified as uncertain, based on the 95% 
classification probability. Overall, however, the results presented in Figure 14 do confirm that it 
is possible to assign probabilities to the TCE detections on the basis of discriminant scores. 
Depending on the needs of the specific monitoring application, these probabilities can be used 
to strike a balance between TCE detection sensitivity and the false detection rate. 

Analysis of Spectral Data. To provide a comparison to the results of the interferogram- 
based analysis, pattern recognition was also performed on the single-beam spectral data 
corresponding to the interferograms in data set B. The single-beam spectra were computed by 
Fourier processing the corresponding interferograms. Triangular apodization and Mertz phase 
correction were employed.  Three different spectral ranges were used, corresponding to 800- 
1000, 800-1200, and 800-1350 cm"1. Given the nominal 4 cm"1 spectral point spacing, these 
ranges corresponded to 53,105, and 144 spectral data points. The ranges selected represent 
different subsets of the detector response envelope depicted in Figure 9. Both TCE spectral 
bands are included in each range. 

The same PLDA training procedure used with the interferogram data of data set B was 
employed with the spectral data. Piecewise linear discriminants based on five individual linear 
discriminants were computed. The computed discriminants were then applied to the prediction 
set. The first three rows of Table 12 list the training and prediction results obtained with the 
spectral data. Improved performance is noted as the spectral range widens, but in each case, 
the overall ability to recognize the TCE signature is poorer than with the interferogram-based 
method. 

The principal limitation of using the single-beam spectra for pattern recognition is that the 
TCE signature represents a very small component of the overall spectrum. As illustrated in 
Figure 9, no visible TCE signals can be observed in the single-beam spectra. However, just as 
filtering techniques can be used to extract analyte information from the interferogram, filters can 
be applied to the spectral data to discriminate against unwanted signals. For completeness, two 
filtering strategies were applied to the spectral data. First and second-derivative filters based on 
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the Savitzky-Golay polynomial approximation [44,45] were applied to the single-beam spectra in 
an effort to enhace the TCE spectral information. Each filter was applied to each of the three 
spectral ranges discussed previously, producing a total of six additional data sets for use in 
testing the pattern recognition methodology. The same PLDA training and prediction 
procedures described above were used with these six data sets. Table 12 includes the resulting 
training and prediction results. Use of the derivative filters improves the results significantly. 
The best results (first derivative, 800-1350 cm'1) are virtually identical to those obtained with the 
interferogram-based procedure. The spectral-based analysis achieves a slightly better TCE 
classification percentage, but is slightly more susceptible to false detections. 

These results suggest that filtering strategies can be used to isolate information from the 
single-beam spectra directly, just as analogous procedures can be used with the interferogram. 
This is not surprising, given the linearity of the Fourier transform. However, as discussed 
previously, use of the direct interferogram analysis lowers the data collection and data 
processing requirements of the remote sensor and may make possible the design of rugged, 
low-cost spectrometers that only collect a short interferogram. 

Conclusions 

The results presented above demonstrate that it is possible to implement a highly 
accurate, selective, and automated detection of TCE by passive FTIR remote sensing 
measurements. The interferogram-based methodology does not require an infrared background 
measurement. Automated detection of TCE is achieved at the instrumental limit of detection 
against a wide variety of infrared backgrounds, including low-angle sky backgrounds containing 
a myriad of atmospheric spectral features. The ability of the interferogram-based analysis to 
reject these interfering spectral signatures, as well as the signatures of other chemical species 
present, suggests that it is viable to use bandpass filters to isolate specific spectral features in 
the interferogram domain. Thus, only a short interferogram segment is required to achieve 
significant spectral selectivity. This is confirmed by comparing the interferogram-based results 
to the analogous results obtained in an analysis of filtered single-beam spectra. 

The analyses of data sets A and B both suggested that the optimal interferogram 
segment for TCE detection is located greater than 100 points from the centerburst, and that 
filters of FWHH ^120 cm'1 are best. While the analysis of data set A was inconclusive 
regarding the optimal filter position, the results from data set B suggest that the use of the 938 
cm'1 band allows the lowest limit of detection to be achieved. 

Finally, a significant result derived from this work is that the piecewise linear discriminant 
procedure can be used to define an effective limit of detection for TCE. The discriminant scores 
derived from the application of PLDA to filtered interferogram data clearly encode information 
about the strength of the TCE spectral signal. Clear evidence also exists that the discriminant 
boundaries coincide with the instrumental limit of detection, and that confidence levels can be 
assigned to the discriminant scores. This allows the sensitivity of the automated detection 
algorithm to be tuned in a highly flexible manner. 
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Table 12 

Pattern Recognition Classification Results for Spectral Data 

Spectral Range 
(cnr1) 

Preprocessing 
Method 

Training 
(%)a 

Prediction 
(%) 

TCE-actives TCE-actives 
False 

detection 
Total 

800-1000 none 81.1 76.5 0.3 92.0 

800-1200 none 95.0 92.4 0.2 97.3 

800-1350 none 95.4 92.2 0.2 97.3 

800-1000 1 st derivative" 95.9 92.3 0.7 97.0 

800-1200 1st derivative 98.9 97.2 0.8 98.5 

800-1350 1st derivative 99.0 97.1 0.7 98.6 

800-1000 2nd derivative0 92.6 88.4 0.2 96.0 

800-1200d 2nd derivative 98.3 96.3 0.7 98.3 

800-1350 2nd derivative 99.1 97.1 0.9 98.4 

aDue to the single-sided requirement of piecewise linear discriminants, no false detections occur 
in training. 

"Computed by a 7-point quadratic Savitzky-Golay filter.24,25 

cComputed by a 7-point quadratic-cubic Savitzky-Golay filter.24,25 

dResults computed with a four-vector piecewise linear discriminant due to the fifth vector being 
not single-sided. 
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Quantitative Analysis of Sulfur Dioxide with Passive Fourier Transform 
Infrared Remote Sensing Interferogram Data 

One FTIR remote sensing application of significant interest is the monitoring of industrial 
stack emissions. In this experiment, a ground-based spectrometer is fitted with telescope optics 
and used to view the plume from a stack against a sky background. The analyte features in the 
observed spectra are typically emission bands arising from the vibrational relaxation of the hot 
effluents. The feasibility of performing passive remote FTIR monitoring of stack plumes has 
been demonstrated [46,47]. Research in a number of laboratories has focussed on either the 
development of the FTIR instrumentation for this application [48,49] or the development of signal 
processing methodologies that would be compatible with modified FTIR instruments [35.50-54]. 

Quantitative analysis of smokestack emissions by passive FTIR remote sensing has 
been hindered by several factors which affect the passive measurement of an effluent plume. 
These include the requirement of a significant temperature difference between the analyte and 
the infrared background, spectral interference caused by the presence of species such as water, 
ozone, and carbon dioxide, the difficulty of collecting a representative background spectrum for 
use in processing the spectral data of the analyte, and the effects of light scatterning by airborne 
particulates. In addition, the use of an FTIR instrument in the outdoor environment places 
severe demands on the ruggedness and reliability of the spectrometer hardware. 

The research described here is directed to overcoming two of the limitations listed above: 
eliminating the need for a spectral background measurement and fostering the development of 
smaller, more rugged, and more automated instrumentation. This work represents a feasibility 
study for testing a data analysis algorithm that has the potential for addressing both of these 
challenges. In this work, under experimental conditions that simulate a stack emission, 
quantitative analysis of sulfur dioxide is performed without the use of any background 
measurement by direct analysis of short segments of the collected FTIR interferograms. This is 
accomplished by combining a preprocessing digital filtering step and a multivariate calibration 
technique based on partial least-squares (PLS) regression. This approach has the additional 
potential advantage of decreasing both the data acquisition and data processing requirements 
for the measurement, as well as simplifying the instrumentation requirements. If the 
interferogram-based analysis can be restricted to a short segment of the interferogram, a simpler 
(i.e., lower resolution) interferometer design can be employed. This innovation could increase 
the ruggedness and reliability of a passive remote sensor, as well as reduce its manufacturing 
cost. 

Experimentation 

Instrumentation. Two Midac FTIR spectrometers (model M2400 series) were employed 
in this investigation (Midac Corp., Irvine, CA). The spectrometers (unit serial numbers 120 and 
145) were furnished with narrow-band liquid nitrogen cooled Hg:Cd:Te detectors operating over 
the 1250 to 850 cm'1 spectral region. The field of view (FOV) for each spectrometer was limited 
to 3 milli-radians by a telescope having a ten-inch aperture. 

A heated gas cell (Model 2408-5546, International Crystal Laboratories, Garfield, NJ) 
was positioned between the exit aperture of this telescope and the entrance aperture of the 
respective spectrometer. The gas cell characteristics were a 10 cm path length, 38 mm clear 
aperture, and temperature control from ambient to 250 °C with an accuracy of ± 1 °C. The gas 
cell valve ports were modified to allow sample flow-through operation. This cell used sodium 
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Chloride windows to contain samples of sulfur dioxide. Since cell temperatures always exceeded 
ambient, fogging of the windows did not occur from accumulation of atmospheric moisture. The 
cell assembly was mounted directly in front of the spectrometer entrance aperture with a 
customized cell holder (AeroSurvey Inc., Manhattan, KS). The gas cell aperture was large 
enough to avoid occlusion of the spectrometer FOV through the telescope. 

The interferogram data were acquired with the MIDCOL software package [55] on a Dell 
System 486P/50 computer operating under MS-DOS (Microsoft, Inc., Redmond, WA). The 1024- 
point interferograms were sampled at every eighth zero-crossing of the HeNe reference laser. 
The maximum digitized frequency was 1975 cm'1, and the transformed spectral data had a point 
spacing of 3.9 cm"1. 

Procedures. Infrared energy collected from sky backgrounds was directed through the 
gas cell and into the interferometer. The cell contained either pure nitrogen or a mixture of sulfur 
dioxide and nitrogen. Gases were continuously flowed through the gas cell at 0.1 L/min and the 
output was monitored with a GASMET gas analyzer system (Temet Instruments, Oy, Finland) to 
ensure that a stable gas concentration was achieved. The gas flow rate was maintained through 
the cell during a change to a new temperature to minimize the time necessary for concentration 
equilibration. The cell temperatures of 50, 80,120, and 150 °C were used in this study to 
simulate temperatures found in power plant stack effluent plumes. The time required to achieve 
a constant temperature was on the order of ten minutes. Blank measurements in which the cell 
contained pure nitrogen were followed by the sulfur dioxide concentrations in order of increasing 
concentration. Measurements for all temperatures at a given concentration were made before 
proceeding to the next higher concentration. 

Gas concentrations were controlled by nitrogen dilution of a certified sulfur dioxide 
calibration gas (10,100 ppm) which was produced with ± 5% accuracy (Scott Specialty Gases, 
Plumsteadville, PA). The various sulfur dioxide concentrations were obtained through the use of 
two mass controllers that metered the appropriate relative flow rates of pure nitrogen and the 
sulfur dioxide calibration gas into a mixing chamber. The gas mixture was directed through the 
gas cell and the exit port was connected to the GASMET gas analyzer. On the basis of the 
determinations made with the GASMET analyzer, the path averaged concentrations introduced 
into the 10 cm cell varied from 238.0 to 1220.0 ppm*m. Path averaged concentrations in ppm*m 
units are reported for compatibility with field remote sensing measurements in which the actual 
optical depth of the analyte cloud is unknown. 

A low-angle sky background was viewed by elevating the telescope to approximately 15° 
above the horizon. A set of 100 interferograms was collected for each concentration and 
temperature condition generated with the gas cell. The concentration was determined with the 
GASMET analyzer at both the beginning and end of a collection of interferograms. Seven data 
files were collected by use of six concentrations of sulfur dioxide and a nitrogen blank for both 
Midac spectrometer units. The interferograms were transferred to a Silicon Graphics 4D/460 
R3000 computer (Silicon Graphics, Mountain View, CA) operating under the Irix operating 
system (version 5.2). All interferogram analysis was performed with this system by use of 
software written in FORTRAN-77. Fourier filtering and multiple linear regression analysis of 
interferogram data relied on the use of subroutines from the IMSL library (IMSL Inc., Houston, 
TX). 
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Results And Discussion 

Overview of Emission Measurements. Infrared emission spectroscopy has been used for 
both qualitative [46,56] and quantitative [57-60] analysis of heated samples. The difficulties 
involved in quantitative analysis have been discussed in detail previously [47]. In that work, an 
equation for calculating the concentration of an emissive sample was derived. The derivation 
was based on the principal assumption that for any material, 

7(v) + f?(v) + e(v) = 1 (7) 

where T(v) is the transmittance, F?(v) is the reflectance, and e(v) is the emissivity at 
wavenumber, v. This equation is simplified by assuming that reflectance is negligible for typical 
gas samples. The Beer-Lambert law can then be used to obtain the relationship between T(v) 
and concentration, thereby producing 

e = -log [1_ - e(v)] (8) 

a(v) b 

where c is the concentration of the analyte, a(v) is the analyte absorptivity, and b is the optical 
path length of the sample material. 

Emissivity, e(v), is the ratio of the energy emitted by a sample at wavenumber, v, to the 
energy emitted at that wavenumber by a blackbody radiator of the same temperature. This 
establishes that the measured analyte spectral response will be a function of both concentration 
and temperature. Thus, an evaluation of the effect of temperature on the analysis is an 
important part of any quantitative determination based on emission measurements. 

Sulfur Dioxide Emission Bands. Sulfur dioxide is a nonlinear symmetric molecule with 
three characteristic fundamental vibrations at 1361 (v3), 1151 (v,), and 519 (v2) cm"1 in the mid- 
infrared spectral region. These can be attributed to the asymmetric stretch, symmetric stretch, 
and in-plane scissoring modes of vibration [41]. Figure 15 displays a single-beam spectrum of 
916.3 ppm*m sulfur dioxide at 150 °C collected while the spectrometer (unit 120) was viewing a 
clear blue sky background. The emission bands of sulfur dioxide arise as positive-going peaks 
in the single-beam spectrum. The band at 1361 cm'1 is clearly visible, while the band at 1151 
cm'1 is barely discernible above the baseline. While the band at 1361 cm'1 is the most visible in 
this spectrum, this band is often not observed in the passive FTIR spectra of an actual 
smokestack plume because of atmospheric attenuation due to the presence of strongly 
absorbing water molecules. In this work, the analysis will focus on each band individually, and 
the results will be compared. 

Digital Filter Generation and Operation. As described previously, our laboratory has 
developed a series of general-purpose signal processing techniques for direct qualitative 
analysis of passive FTIR remote sensing interferogram data [8,9,35,54]. A combination of time- 
varying finite impulse response (FIR) digital filters and pattern recognition (piecewise linear 
discriminant analysis) methods are used to isolate the information pertaining to an analyte of 
interest from that corresponding to interferents or the spectral background. The digital filter 

69 



Aj!SU9ju| 

<° 1- 

° CO 
D)T- 
C *- 

•E  CO 
O T3 

'■5 C 
CO S 
O -Q 
Q-c 
CJ) o 
£ » ~" CO 
CO *p 

I» ffl © 

© o 

IS a. 3 

si o © 

® o J_ ** 
I"  O) 

oi ° c o o 
m Q. 
t-   CO 
*- © 
to fc 

T3  g 

S.2 
= Ü o c 

®   S- 
g£ 
i- co 
= ö 
3-2 
co o 

££ 
\* 
CO  © 

5| 
of 
2 » 
tS"o 
© CO 
Q. CO 
CO   CO Eo. 
CO C 
© CO 

JQ JQ 

CO "O 
"^ © 
c 

CO 
S  CO 

70 

CO 

c 
© 

"55 
to 

U.CD g 

2 
3 



bandpass is designed to coincide with the modulated interferogram frequencies corresponding 
to the infrared frequencies associated with a spectral band of the analyte. The action of the 
digital filter is to suppress any frequency information lying outside the filter bandpass, and is 
therefore analogous to a background subtraction in that it removes the unwanted spectral 
background features before the application of the pattern recognition procedure. 

The work presented here combines digital filtering and PLS regression methods to 
demonstrate the feasibility of performing interferogram-based quantitative analysis of sulfur 
dioxide using controlled field FTIR data. Successful use of digital filtering and a univariate 
calibration procedure with filtered interferogram data of benzene and nitrobenzene of varying 
concentrations has been demonstrated [29]. In that work, an approximte linear relationship 
between the concentration of the anayte and the intensity of the filtered interferogram was 
established. One of the key assumptions in this derivation was that variations in the intensity of 
the filtered interferogram were caused by changes in analyte concentration only. The use of the 
sulfur dioxide data set violates this assumption because the different temperatures contribute 
additional variation in the interferogram intensity. It was anticipated that the use of PLS 
regression would help overcome this problem. 

A scheme similar to the one reported here has been successfully tested with aqueous 
glucose solutions which featured significant overlap between the absorption bands of glucose 
and water [61]. Success has also been reported with the use of a more complicated data matrix 
of glucose, triacetin, and bovine serum albumin mixtures of various concentrations spanning 
clinically relevant ranges [62]. In that study, glucose-dependent information was extracted from 
interferogram data by use of a combination of multiple bandpass digital filters and PLS 
regression. 

Our data analysis procedure begins with the application of bandpass digital filters directly 
to short segments of the collected FTIR interferograms suspected to contain the signature of the 
target analyte. The design of the time-domain filter is based on the knowledge of the spectral 
characteristics of the target compound. For example, in this work, the filters were designed to 
pass the interferogram frequencies corresponding to the sulfur dioxide emission band at either 
1151 or 1361 cm"1. The purpose of the filtering operation on the interferogram is to provide 
frequency selectivity for a particular spectral band that is characteristic of the target analyte. The 
dotted trace in Figure 15 depicts the positioning of a Gaussian-shaped digital filter bandpass 
designed to isolate interferogram information pertaining to the frequencies of the sulfur dioxide 
band at 1361 cm"1. In this work, the time-varying FIR digital filtering technique developed in our 
laboratory was used [8]. 

Figure 16 is a frequency response function of a typical filter centered at 1360 cm"1 and 
with a full width at half-height (FWHH) value of approximately 122 cm"1. The units on the y-axis 
are attenuation in decibels (dB). Attenuation in this context means suppression of frequencies 
that lie outside the region specified by the filter passband. 

Temperature Effects. The infrared emission radiation observed during a passive FTIR 
remote sensing experiment is a composite signal of emissions contributed from the target 
analyte, the spectrometer (i.e., cell, interferometer optics, and detector), other species in the 
analyte cloud and along the optical path, and the background atmospheric emissions. 

For the data employed here, the variation in the IR emission is a function of the 
concentration and temperature of sulfur dioxide in the cell and the changes in the sky 
background and intervening atmosphere observed through the cell. As described by the 
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Boltzmann distribution function, temperature exerts a significant effect upon the ratio between 
the number of molecules in the excited and ground vibrational energy levels of a heated sample. 
In typical remote sensing applications, the exit temperature of stack plumes is approximately 400 
K [63]. However, since the area of the analyte cloud being monitored is displaced from the top 
exit of the smokestack, temperature and concentration gradients of the exit gases are 
anticipated. 

The effects of varying sulfur dioxide concentration and temperature are pictorially 
depicted in Figures 17A and B. Figure 17A displays passive difference spectra of three different 
concentrations of sulfur dioxide collected at 150 °C. A background spectrum of nitrogen 
collected at 150 °C was used to subtract the influence of the background from each of the 
spectra. As expected, an increase in the concentration of the sample is accompanied by an 
increase in band heights of the 1361 and 1151 cm"1 bands of sulfur dioxide. Figure 17B is a plot 
of four passive difference spectra of approximately constant sulfur dioxide concentrations, but 
collected at 50,80,120, and 150 °C. Background spectra of nitrogen collected at these four 
temperatures were used to subtract the effects of the background emissions from the spectra 
collected at the respective temperatures. It is evident that an increase in cell temperature leads 
to an increased intensity of emission. A nonlinear relationship between band intensity and 
temperature is hypothesized, as would be expected if the sample molecules obey the Boltzmann 
distribution. The negative intensity values in some regions of the spectra are a result of a 
mismatch between the analyte and background spectra used. 

The digital filtering technique discussed above is designed to eliminate a majority of the 
background emission, but is not sufficiently selective for non-analyte signals that are heavily 
overlapped with the analyte signal. For this reason, PLS regression was used to help account 
for the various analyte and non-analyte contributions. 

Assembly of Data Sets. As noted previously, during the collection of the data, two 
concentrations of sulfur dioxide were recorded per sub-file. Each data file contained four sub- 
files of 100 interferograms each, corresponding to data collected at each of the four temperature 
settings. This produced a total of eight sulfur dioxide concentration readings per data file. It was 
assumed that the two sulfur dioxide concentration readings per sub-file corresponded to the first 
nine and the last nine interferograms in the sub-file. This produced an average of eight samples 
with nine replicate interferograms each per data file. 

Three data sets were assembled with interferograms collected with different 
combinations of cell temperatures. Each data set was constructed by randomly assigning the 
samples to calibration, monitoring, and prediction sets. For this assignment, a sample was 
defined as the nine replicate interferograms corresponding to a GASMET concentration reading. 

In all studies involving the three data sets, the calibration models constructed with the 
use of the calibration set were evaluated with the use of the monitoring set during the 
optimization of the experimental parameters. The best model was the one with the lowest 
standard error of monitoring (SEM). SEM is defined as 

SEM= 

(9) 

Efcftf-SiJ2 
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Figure 17. Passive difference spectra. (A) 1163.5 ppm*m (dashed line), 635.5 ppm*m     (solid 
line), and 373.9 ppm*m (chain-dashed line) sulfur dioxide collected at 150 °C. (B) 635.5 ppm*m 
sulfur dioxide at 150 °C (dashed line), 642.9 ppm*m sulfur dioxide at 120 °C (solid line), 646.8 
ppm*m sulfur dioxide at 80 °C (dotted line), and 644.9 ppm*m sulfur dioxide at 50 °C (chain- 
dashed line). 

74 



where nm is the number of interferograms in the monitoring set, cm, is the actual sulfur dioxide 
concentration associated with the f interferogram in the monitoring set, and cmi is the 
corresponding sulfur dioxide concentration predicted by the model. 

Once the optimal parameters were realized, the calibration and monitoring sets were 
combined and used to build the final calibration model. This model was tested with the use of 
the prediction set that had been set aside and not used during the optimization step. This way, 
an independent validation set was ensured within the limits of the experiment. The standard 
error of calibration (SEC) and standard error of prediction (SEP) were computed for the final 
optimal model. SEC and SEP are defined similarly to SEM, with the exception that SEC is 
adjusted for the loss of degrees of freedom corresponding to the number of estimated 
regression coefficients in the calibration model. 

150 °C Data. A total of 24 samples (216 interferograms) were present in this data set. 
The data were randomly apportioned into 16 calibration samples (144 interferograms), 4 
monitoring samples (36 interferograms), and 4 prediction samples (36 interferograms). The 
range of path averaged concentrations in this data set was 251.1 to 1163.5 ppm*m. 

120 and 150 °C Data. There were 48 samples (432 interferograms) in this data set. The 
data were partitioned into 30 calibration samples (270 interferograms), 8 monitoring samples (72 
interferograms), and 10 prediction samples (90 interferograms). The range of path averaged 
concentrations in this data set was 242.7 to 1220.0 ppm*m. 

Full Data. The full data set consisted of 93 samples (837 interferograms) collected at 
temperatures 50,80,120, and 150 °C. Of these, 54 samples (486 interferograms) were from 
unit 120 and 39 samples (351 interferograms) were from unit 145. This data set was randomly 
assigned into 52 calibration samples (468 interferograms), 18 monitoring samples (162 
interferograms), and 23 prediction samples (207 interferograms). The range of path averaged 
concentrations in the full data set was 238.0 to 1220.0 ppm*m. A complete summary of the three 
data sets is shown in Table 13. 

Analysis of Sulfur Dioxide Band at 1361 cm'1. A total of 26 digital bandpass filters 
centered between 1357 and 1363 cm"1, each with FWHH values between 82 and 180 cm1, were 
designed. The filter design requires experimental data [8], and was implemented with 819 
nitrogen background interferograms. Calibration models were constructed with the use of 
interferogram segments filtered with each of these filters. The interferogram segments studied 
resided between points 50 and 300, relative to the centerburst, and were 100,150,200, and 250 
points in length. For a given number of interferogram points, the starting and stopping points 
were incremented by 50 points until the entire range of points 50-300 was studied. The model 
sizes investigated were 1 to 12 PLS factors. The optimization experiments detailed above were 
performed for (1) the 150 °C data, (2) the combined 120 and 150 °C data, and (3) the full data 
set collected at the four temperature settings. The results are tabulated in Table 14. 

Analysis of Sulfur Dioxide Band at 1151 cnr1. With the use of 819 nitrogen background 
interferograms, a total of 24 bandpass digital filters were generated. The filters were centered 
between 1149 and 1155 cnr1, and had FWHH values that fell between 120 and 230 cm'1. The 
rest of the optimization experiments were identical to those performed above with the 1361 cm"1 

band. The results are summarized in Table 15. With the exception of model size, these results 
are similar to those performed with the use of the more intense 1361 cm"1 band. The PLS 
procedure requires more factors to extract information from the less intense band. 
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Table 13 

Partitioning of Data Sets 

Data Type Calibration subset Monitoring set Prediction set Total 

150 °C 16a (144 intfgs) 4a (36 intfgs) 4a (36 intfgs) 24a(216 
intfgs) 

120&150°C 30 (270 intfgs) 8 (72 intfgs) 10 (90 intfgs) 48 (432 intfgs) 

All temps 52 (468 intfgs) 18 (162 intfgs) 23 (207 intfgs) 93 (837 intfgs) 

aNumber of samples defined by individual concentration measurements. The number of 
replicate interferograms corresponding to these samples is indicated in parentheses. 

Table 14 

Analysis of Sulfur Dioxide Band at 1361 cm'1 

Data Type Intfg. 
Segment Ptsa 

PLS Factors SEC 
(ppm*m) 

SEP 
(ppm*m) 

R2 (%) 

(a) Partitioned Data Sets 

150 °C 50 - 300 5 21.59 51.51 
(4.4%)b 

99.35 

120&150°C 50-150 10 24.88 52.73 (4.3%) 99.10 

All temps 50-150 10 80.85 88.23 (7.2%) 90.08 

(b) Cross-Validation Prediction 

150 °C 50 - 300 5 25.37° 38.67 (3.3%) 99.09d 

120&150°C 50-150 10 28.01 39.84 (3.3%) 98.93 

All temps 50-150 10 81.57 95.01 (7.8%) 90.01 

"Relative to interferogram centerburst. 

"SEP expressed as a percentage of the maximum path averaged concentration in the data set. 

Tooled value computed across the set of calibration models used for the cross-validation 
predictions. 

"Average value computed across the set of calibration models used for the cross-validation 
predictions. 
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Table 15 

Analysis of Sulfur Dioxide Band at 1151 cm'1 

Data Type Intfg. 
Segment Ptsa 

PLS Factors SEC 
(ppm*m) 

SEP 
(ppm*m) 

R2 (%) 

(a) Partitioned Data Sets 

150 °C 100-300 7 19.32 49.70 
(4.3%)b 

99.48 

120&150°C 50-150 12 27.91 48.46 (4.0%) 98.87 

All temps 50 - 250 12 75.00 98.93(8.1%) 91.49 

(b) Cross-Validation Prediction 

150 °C 100-300 7 23.01c 40.04 (3.4%) 99.26d 

120 & 150 °C 50-150 12 29.90 44.58 (3.7%) 98.79 

All temps 50 - 250 12 77.46 103.03 
(8.4%) 

91.01 

aRelative to interferogram centerburst. 
bSEP expressed as a percentage of the maximum path averaged concentration in the data set. 

Tooled value computed across the set of calibration models used for the cross-validation 
predictions. 

"Average value computed across the set of calibration models used for the cross-validation 
predictions. 
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Cross-Validation Prediction. In order to validate the results obtained from the studies 
above, the alternative calibration method of cross-validation was used. This method is most 
commonly used in applications where the number of available samples is limited. In such 
situations dividing the data into calibration and prediction sets would lead to data subsets that do 
not encode the total span of variation present in the full data set, resulting in poorly predicting 
calibration models. These models predict poorly because they underestimate the errors to be 
expected in a true unknown sample. Therefore, the error in this cross-validated prediction 
should be more representative of what one would obtain with an independent set of unknown 
samples that have been represented adequately by the calibration samples. 

The cross-validation method used was the leave-one-out type [64]. Given a set of n 
calibration samples, a calibration model was built with n -1 samples, and using this calibration 
model, the concentration of the sample left out was predicted. This process was repeated n 
times until each sample has been left out and predicted once. In this procedure, the nine 
replicate interferograms corresponding to each sample were all left out and predicted as a 
group. Ideally, this procedure should have been used when optimizing the experimental 
variables but is prohibitively time consuming, especially with a relatively large data set such as 
the full data set above. Therefore, in this work, cross-validation was performed with the optimal 
parameters already realized above. The results from this study are tabulated in Tables 14 and 
15. 

Evaluation of Results. For the 150 °C data, using the sulfur dioxide band at 1361 cm"1, 
the best calibration model had R2, SEC, and SEP values of 99.09%, 25.37, and 38.67 ppm*m, 
respectively. This was a five-factor model realized using a 250-point interferogram segment, 
located between points 50 and 300, relative to the centerburst. The filter was centered at 1359.6 
cnr1 and the FWHH value was 122 cm"1. The combined 120 and 150 °C data required a 10- 
factor model along with a 100-point interferogram segment located between points 50 and 150 
to produce equivalent results. The filter used was centered at 1363 cm"1 and had a FWHH value 
of 142 cm"1. This model had an R2 of 98.93%, a SEC of 28.01 ppm*m, and an SEP of 39.84 
ppm*m. As the number of samples from the separate instruments increased, additional sample 
and instrumental variations are introduced into the calibration model, requiring additional PLS 
factors to account for them. Figure 18 displays two correlation plots corresponding to the best 
results from the (A) 150 °C and (B) combined 120 and 150 °C data. Both plots show an 
excellent correlation between the estimated and actual sulfur dioxide concentrations, confirming 
the suitable choice of a linear model. The prediction samples (closed triangles) fall within the 
spread of the calibration samples (open circles). 

Figure 19 shows a correlation plot generated from the best calibration results of the full 
data set. This data set includes all samples from the two spectrometers collected at 50,80,120, 
and 150 °C. The 10-factor model realized with the use of a 100-point interferogram segment 
located between points 50 and 150 had an R2 of 90.01%, a SEC of 81.57 ppm*m, and a SEP of 
95.01 ppm*m. From the correlation plot, it is evident that the data analysis procedure used here 
cannot account for variations in infrared intensities caused by temperature differences of up to 
100 °C. However, the prediction samples (solid triangles) still fall within the spread of the 
calibration samples (open circles). 

The PLS calibration model is based on the assumption of a linear relationship between 
the intensities of filtered interferogram points and the concentration of sulfur dioxide. This 
assumption is not necessarily valid because unlike in absorption spectroscopy, there is no linear 
equation that relates emissivity to analyte concentration in emission spectroscopy. Also in order 
for eqn. 8 to be applicable in calculating concentrations, eqn. 7 must be true to a very good 
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Figure 18. Correlation plots of cross-validated estimated vs. actual sulfur dioxide concentrations. 
(A) 150 °C data and (B) combined 120 and 150 °C data. 
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degree of approximation. Residual plots derived from the calibration models can be used to 
detect a lack of fit to the linear model. Figure 20 shows residual plots from the cross-validation 
results corresponding to (A) 150 °C data and (B) combined 120 and 150 °C. From the two 
plots, it is evident that the calibration and prediction of high concentrations of sulfur dioxide 
poses a significant challenge to the calibration model. This could be attributed to the use of a 
linear algorithm for modeling a phenomenon that is nonlinear at high concentrations. Another 
compelling evidence of nonlinearity is the number of PLS factors required to model the variation 
present in these data sets. A similar pattern was observed in the residual plot corresponding to 
the best calibration results of the full data set. The use of a formal nonlinear modeling technique 
such as artificial neural networks or nonlinear PLS regression is currently under investigation to 
address this problem. 

Conclusions 

This work has demonstrated that quantitative analysis of passive remote sensing FTIR 
data can be implemented by use of short segments of bandpass filtered interferograms. The 
results from this work confirm that a linear model can be used to approximate the relationship 
between filtered interferogram intensities and the concentrations of sulfur dioxide emissions for 
data collected with temperature differences <; 30 °C. This is a significant result because the 
technique can to some significant degree correct for the temperature differences between the 
molecules of the target analyte in the area of the cloud being monitored. Although, for the füll 
data set the proposed method could not correct for signal variation introduced by temperature 
variation of 100 °C, it has been reported that within a stack diameter of the top of the stack, 
temperature and concentration gradients are minimal [65]. Therefore, judicious selection of the 
area to focus the telescope in the plume could decrease the effects of temperature variation. 

The analysis was performed without the use of a background reference interferogram, 
thereby circumventing the virtually impossible task of collecting a "clean" non-varying 
background interferogram in FTIR remote sensing applications. That the analysis could be 
performed with a short interferogram segment in the time-domain is a very significant result 
because the next generation of FTIR remote sensors could be engineered around this result. 
The optical retardation of the moving mirror in the interferometer compartment would be 
minimized, thereby making the sensor potentially more rugged, reliable, and more suited for 
mounting on a moving vehicle or on an airborne platform. The methodology also has the 
potential for automation and real-time quantitative analysis of a large number of compounds in 
the workplace. 

Calibration Transfer Results for Automated Detection of Acetone and 
Sulfur Hexafluoride by FTIR Remote Sensing Measurements 

Two critical problems have been shown to hinder the widespread application of FTIR 
remote sensing methods to the monitoring of airborne pollutants. Traditionally in FTIR remote 
sensing, a reference background spectrum is collected and used to remove the background 
emission profile present in analyte spectra [1]. Simple changes in the environment such as wind 
or temperature often prohibit stable, reproducible reference spectra from being measured. 
Analyte spectra obtained in this fashion contain widely varying baselines and can be difficult to 
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Figure 20. Residuals vs. cross-validated estimated sulfur dioxide concentration. (A) 150 °C data 
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analyze. In addition, a second important background problem is the large instrument-specific 
signatures which make the automated analysis of data from different instruments difficult. 

The interferogram-based data analysis methodology described above seeks to overcome 
these challenges through signal processing and pattern recognition techniques applied directly 
to the raw interferogram data obtained from the passive remote sensing spectrometer, avoiding 
the need altogether of a separate background measurement. As described previously, digital 
filtering steps isolate the analyte signal from the background, and pattern recognition techniques 
are utilized to discriminate and characterize signals which contain analyte from those which do 
not in an automated fashion. In the research described here, this methodology is extended with 
additional signal processing steps and with more strongly attenuating digital filtering techniques. 
It will be shown that instrument-specific background problems can be eliminated as well, 
allowing a successful transfer of qualitative calibration information between spectrometers. 

Experimentation 

Calibration transfer issues in passive remote sensing were explored by collecting 
laboratory acetone and sulfur hexafluoride (SF6) interferograms on a pair of similarly configured 
Midac Outfielder FTIR emission spectrometers, labeled units 120 and 145 (Midac Corp., Irvine, 
CA). These spectrometers employed liquid nitrogen-cooled Hg:Cd:Te detectors for use in the 
800-1400 cm"1 spectral range. 

These spectrometers were interfaced to a Dell system 486P/50 IBM PC compatible 
computer (Dell Computer, Austin, TX) operating under MSDOS (Microsoft, Redmond, WA). 
Data acquisition was performed with the MIDAS software package [38]. A maximum spectral 
frequency of 1974.75 cm"1 was obtained with interferogram points being collected at every 
eighth zero crossing of the reference laser. Four cm"1 point spacing was obtained through the 
collection of 1024 interferogram points per scan. 

A 4x4 inch extended blackbody (Model SR-80, CI Systems, Agoura, CA) provided a NIST 
traceable infrared source whose temperature was varied over 5 to 50 °C. The source 
temperature was accurate to 0.03 °C and precise to ± 0.01 CC. A sample gas cell with windows 
composed of low density polyethlyene (0.0005 in. thickness) was used. A thermocouple was 
utilized to monitor gas cell temperature. Reagent grade acetone and sulfur hexafluoride were 
used as analytes. 

For both acetone and SF6 experiments, data collection for units 120 and 145 was 
performed alternately by moving the cell and blackbody in front of each instrument in turn. For 
the acetone data set, interferograms were collected with blackbody temperatures from 5 to 50 °C 
with steps at approximately 5 °C intervals for dilution factors with water of 1 (pure acetone), 1/2, 
1/4,1/8,1/16,1/32, and 1/64. Between 20 and 200 interferograms were collected at each level. 
For the SF6 data set, interferograms were collected over the same temperature range with 
similar 5 °C steps with injected analyte volumes of 0.05,0.02, 0.1,0.2.0.3,0.5, and 1.0 cc. 
Between 20 and 150 interferograms were acquired at each level. 

The collected interferograms were Fourier transformed and the resulting single-beam 
spectra were ratioed to corresponding background spectra collected when no analyte was 
present. After converting to absorbance units, the spectra were visually inspected to ensure that 
the analyte signal was clearly visible above the noise. Those which did not meet this criterion 
were removed from the data set This led to the training and prediction sets for each analyte as 
listed in Table 16. 
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For data analysis, the collected data sets were transferred to a dual 180 MHZ Pentium 
Pro (Intel Corp., Santa Clara, CA) personal computer operating under the Linux operating 
system, version 2.0.14. The digital filtering and pattern recognition were performed on this 
system with original software written in FORTRAN 77 and C. Additional processing was 
performed with the aid of Matlab version 4.2c (The MathWorks, Natick, MA). 

Results and Discussion 

Infrared signals measured through passive FTIR remote sensing experiments consist of 
analyte, background, and instrument-specific features superimposed [35]. The lack of a stable 
background prevents the use of conventional data analysis methods such as the calculation of 
absorbance or difference spectra for an automated determination since they are unable to 
remove background and instrument features reliably through ratioing or subtraction. The 
purpose of the signal processing and pattern recognition steps outlined here is the extraction of 
analyte information and the suppression of interfering signals, thereby allowing an automated 
determination to be performed without the use of background measurements for ratioing or 
subtraction. 

For analytes in this study, the features of interest are the 1216 cm"1 C-CO-C stretching 
band of acetone (49 cm'1 full width at half maximum (fwhm)) and the 945 cm"1 S-F stretching 
band of SF6 (10 cm1 fwhm). Figure 21 demonstrates the type of signal obtained through the 
calculation of absorbance spectra for interferograms collected from the laboratory acetone and 
SF6 data sets.   For the blackbody source temperature range covered in this study, both 
absorption and emission peaks were present in the data sets. Fine rotation features were 
absent in all spectra calculated from these data due to the 4 cm'1 spectral point spacing. 

In order for our methodology to avoid the use of inactive backgrounds for ratioing or 
subtraction, signal processing and pattern recognition analysis are applied directly to the 
interferogram data. Direct interferogram analysis provides advantages by decomposing spectral 
features of different widths into different regions of the interferogram. This can be attributed to 
the fact that the interferogram representation of a narrow spectral feature dampens more slowly 
than the corresponding representation of a wide background feature. By optimal choice of the 
interferogram segment to use for analysis, a significant amount of background interference can 
be removed. 

Once an optimal segment is isolated from the interferogram, digital filtering is used to 
enhance the analyte signal further. Time domain digital filtering involves the estimation of the 
convolution of the interferogram with the time domain representation of the filter frequency 
response function [8]. Digital filtering provides a means of extracting frequency information due 
to the analyte from the problematic background frequencies while allowing the methodology to 
utilize key advantages found in signal processing data in the interferogram (time) domain. 

Two types of digital filtering were used in this study, a time-varying finite impulse 
response matrix filter (FIRM) developed previously in our laboratory, and a standard FIR filter [8]. 
FIRM filters sacrifice attenuation but offer high computational efficiency by having fewer 
coefficients. During filter generation, coefficients deemed statistically insignificant in the 
estimation of the convolution sum can be discarded. Standard FIR filters were calculated 
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aAnalyte active. 

"Analyte inactive. 

Table 16 

Partition of Acetone and SF6 Data Sets 

Acetone SF6 

Unit 120 Unit 145 Unit 120 Unit 145 

Training 3170a 

(8782b) 
3239 

(8284) 
2640 

(3940) 
2041 

(3942) 

Prediction 2190 
(8202) 

2292 
(7753) 

2320 
(3773) 

2134 
(3776) 

Collected 6810 
(16984) 

6810 
(16037) 

8273 
(7713) 

8275 
(7718) 

Table 17 

FIRM Filter Parameters 

Variable SF6 Acetone 

Filter bandpass width (fwhm) 36.4a(81b), 45.4 (110), 54.5 
(125), 63.6 (146), 72.7 (165) 
cm"1 

45.4 (85), 54.5 (103), 63.6 
(150), 72.7 (167), 81.9 (201) 
cm"1 

Interferogram segment 
location0 

75,100,125,150,175 50,75,100,125,150 

"Specified fwhm during filter generation. 

"Measured fwhm. 

cRelative to interferogram centerburst. 
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1300 

Wavenumbers (crrr) 

Figure 21. SF6 and acetone absorbance spectra collected on Midac unit 120 under laboratory 
conditions. (A) Pure acetone spectrum at a blackbody temperature of 50 °C. The line at 1216 
cm'1 highlights the acetone peak. (B) 1 cc SF6 at a blackbody temperature of 50 °C. The SF6 
band at 945 cm'1 is highlighted. 
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through the Remez exchange algorithm and provide exceptional out-of-band attenuation; 
however they contain nearly an order of magnitude more coefficients. Figure 22 shows 
frequency response plots for a representative SF6 FIRM filter as well as several FIR filters 
utilized in this study. FIR filtering allows a closer approximation of the desired passband width to 
be attained. However, the FIRM filter attains approximately 25 decibels (dB) of attenuation with 
an average of 22 filter coefficients, whereas the FIR filters all contain 200 filter coefficients. 

After filtering, a reliable pattern recognition step is required in the analysis to determine 
the presence or absence of analyte signal in the filtered data. Due to its high performance and 
simplicity in configuration, the nonlinear pattern recognition technique utilized for this 
methodology was piecewise linear discriminant analysis (PLDA). PLDA attempts to optimize the 
location of linear separating surfaces, termed discriminants, which divide the data space into 
analyte-active and inactive categories [9,13]. 

As described above, previous work has demonstrated the most efficient means of 
optimizing the experimental parameters of FIRM filter passband center and width, interferogram 
segment starting position and length, as well as those of the PLDA pattern recognition algorithm. 
Using this protocol, and a subset of the overall experimental design used previously, FIRM filters 
were created with the same characteristics for SF6. Acetone FIRM filters were also created, but 
with segment location and filter passband center optimized for its 1216 cm'1 peak. These filters 
were utilized to examine training and prediction as well as calibration transfer issues for acetone 
and SF6. Table 17 summarizes the FIRM filter parameters used. Two values are indicated for 
FIRM filter width. The first is the width supplied to the filter generation algorithm, while the 
second width is the fwhm measured from the actual frequency response of the generated filter. 
Absolute values of the training and prediction interferograms were used in order to make the 
data space more robust for calibration transfer, and Forman phase correction was utilized. In all 
cases Midac unit 120 was used as a primary instrument, meaning that its interferograms were 
used during filter generation, as well as during pattern recognition training. Midac unit 145 was 
used as a secondary instrument to test calibration transfer. No unit 145 interferograms were 
included during training. 

Results for FIRM filtering experiments from data collected on unit 120, and then utilized 
for both training and prediction were between 88.45 and 99.93% for both SF6 and acetone. 
These results demonstrate that FIRM filtering performs well for same-instrument prediction for 
both analytes, as has been shown in the past. However, once these same discriminants were 
applied to data from a secondary instrument (unit 145), cross-prediction results decreased as 
seen in Figures 23 and 24, particularly for SF6. At -40 cm"1, the  acetone  spectral  feature at 
1216  cm'1 is approximately four times wider than SF6. The typical FIRM passband more closely 

approximates the wider acetone peak, but lets a great deal of background information through 
for the narrow SF6 peaks. Cross-prediction results appear to improve as acetone FIRM filter 
passband widths increase, however no clear trend is evident for the optimal segment location. 

Although an extensive experimental study has yet to be performed with FIR filter 
parameters similar to that done with the FIRM study, four FIR filters were generated with 
constant passband width and varying attenuations for both acetone and SF6. These filters were 
applied to the same interferogram segment positions used in the FIRM study. Frequency 
responses for these four filters for SF6 can be seen in Figure 22, with those of acetone being 
similar except for the passband center being located at 1216 cm'1. 
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Wavenumber(cnrf) Filter 

Figure 22. SF6 FIRM and FIR filter frequency response plots demonstrating differences in 
atttenuation and passband width. (A) FIRM filter with fwhm -165 cm*1. (B-E) FIR filters with fixed 
passband width of 72 cm'1. 
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Figure 23. FIRM Uttering cross-prediction results for SF6. Midac unit 120 was used as the 
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Figure 24. FIRM filtering cross-prediction results for acetone. Midac unit 120 was used as the 
primary instrument for predicting the unit 14S data set 
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Results for same-instrument prediction for both analytes varied between 89.99 and 
99.98%, and were similar to the results obtained with the FIRM filters. However, as seen in 
Figures 25 and 26, cross-prediction scores for both compounds were markedly improved. The 
acetone and SF6 predictions are observed to improve with increasing attenuation in the 
stopband, with the best results being observed for attenuations above 60 dB and segments 
located past point 125 (relative to the centerburst). 

Conclusions 

While FIRM filters provide sufficient performance for training and prediction on a single 
instrument, FIR filters with high degrees of stopband attenuation allow a successful transfer of 
qualitative calibration information across data spanning two spectrometers for both acetone and 
SF6 analytes. 

Summary 

This report described studies directed to the automated analysis of FTIR remote sensing 
interferogram data. The research presented here demonstrated that both qualitative and 
quantitative information can be extracted from short segments of digitally filtered interferograms 
without the need for any background or reference measurement. Through the use of 
experimental design techniques, an optimization protocol was devised for determining the key 
implementation parameters of the interferogram-based analysis. An automated compound 
identification algorithm was then developed for TCE and was shown to operate effectively in the 
presence of a wide variety of infrared backgrounds. A quantitative analysis for S02 was also 
implemented through the direct use of short interferogram segments. The TCE and S02 studies 
illustrate that it is feasible to perform both qualitative and quantitative air monitoring 
measurements with the interferogram-based data analysis methodology. Finally, it was shown 
that the analysis can be made resistant to instrument-dependent artifacts. In this way, the data 
analysis protocols can be developed with data from one spectrometer and then applied to data 
collected with a second instrument. This capability is extremely encouraging, and may make 
possible the large-scale implementation of automated compound detection and quantitation 
capabilities. 
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Figure 25. FIR filtering cross-prediction results for SF6. Midac unit 120 was used as the primary 
instrument for predicting the unit 145 data set. 
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